

DEPARTMENT OF COMPUTER SCIENCE

MASTER OF COMPUTER APPLICATIONS (MCA)PROGRAMME

MCAS506:MACHINE LEARNING			
Hours/Week: 4		I.A. Marks: 30	
Credits : 4		Exam. Marks: 70	
Course Outcomes:			
 CO1: Gain knowledge about basic concepts of Machine Learning CO2: Identify machine learning techniques suitable for a given problem CO3: Solve the problems using various machine learning techniques CO4: Apply Dimensionality reduction techniques. CO5: Design application using machine learning techniques. 			
	UNIT-I	12 Hours	
Introduction - Well-posed 1	earning problems Designing a learning syst	em. Perspectives and	
issues in machine learning Concept learning and the general to specific ordering –			
Introduction A concept learning task Concept learning as search Find-S: finding a maximally			
specific hypothesis Version spaces and the candidate elimination algorithm Remarks on			
version spaces and candidate elimination Inductive bias			
version spaces and candidat			
	UNIT-II	12 Hours	
Decision Tree learning – Introduction Decision tree representation Appropriate problems for			
decision tree learning. The basic decision tree learning algorithm. Hypothesis space search in			
decision tree learning. Inductive bias in decision tree learning. Issues indecision tree learning			
Artificial Neural Networks – Introduction, Neural network representation, Appropriate			
problems for neural network learning. Perceptions. Multilayer networks and the back			
propagation algorithm Remarks on the back propagation algorithm. An illustrative example			
face recognition Advanced tonics in artificial neural networks Evaluation Hypotheses –			
Motivation Estimation hypothesis accuracy Basics of sampling theory A general approach			
for deriving confidence intervals. Difference in error of two hypotheses. Comparing learning			
algorithms			
6	UNIT-III	12 Hours	
Bayesian learning – Intro	duction, Bayes theorem, Bayes theorem an	nd concept learning.	
Maximum likelihood and least squared error hypotheses, Maximum likelihood hypotheses for			
predicting probabilities, Minimum description length principle, Bayes optimal classifier, Gibs			
algorithm, Naïve Bayes classifier, An example learning to classify text, Bayesian belief			
networks The EM algorithm Computational learning theory – Introduction, Probability			
learning an approximately correct hypothesis, Sample complexity for Finite Hypothesis Space,			
Sample Complexity for infinite Hypothesis Spaces, The mistake bound model of learning -			
Instance-Based Learning- Introduction, k -Nearest Neighbour Learning, Locally Weighted			
Regression, Radial Basis Functions, Case-Based Reasoning, Remarks on Lazy and Eager			
Learning Genetic Algorithms – Motivation, Genetic Algorithms, An illustrative Example,			
Hypothesis Space Search, Genetic Programming, Models of Evolution and Learning,			
Parallelizing Genetic Algorithms			

UNIT-IV	12 Hours

Combining Inductive and Analytical Learning – Motivation, Inductive-Analytical Approaches to Learning, Using Prior Knowledge to Initialize the Hypothesis, Using Prior Knowledge to Alter the Search Objective, Using Prior Knowledge to Augment Search Operators, Reinforcement Learning – Introduction, The Learning Task, Q Learning, Non-Deterministic, Rewards and Actions, Temporal Difference Learning, Generalizing from Examples, Relationship to Dynamic Programming.

REFERENCE BOOKS

- 1. Tom M. Mitchell, Machine Learning, MGH.
- 2. Stephen Marshland, Taylor & Francis, Machine Learning: An Algorithmic Perspective.
- William WHsieh, Machine Learning Methods in the Environmental Sciences, Neural
 Networks, Cambridge Univ Press.
- 5. Richard O. Duda, Peter E. Hart and David G. Stork, pattern classification, John Wiley & Sons Inc., 2001.
- 6. Chris Bishop, Neural Networks for Pattern Recognition, Oxford University Press, 1995
- 7. Peter Flach, Machine Learning, Cambridge.

