

DEPARTMENT OF MATHEMATICS

MSC MATHEMATICS

MTH 503	Measure and Integration	4 Credits (48 hours)

Course Outcome:Students will have the knowledge and skills to apply the Measure Theory. The concepts are very much applicable in probability theory in Statistics

Course Specific Outcome: At the end of the course Students will have the knowledge and skills to understand, explain in depth and apply in various situations the concepts –

- Lebesgue outer measure, Lebesgue measure, and Lebesgue measurablefunctions.
- Fatou'slemma,Monotoneconvergencetheorem,andLebesgueDom- inated convergencetheorem.
- Characterize Riemann integrable functions on [a,b].
- Vitali Covering lemma, Lebesguetheorem.
- Functionsofboundedvariation, Absolutelycontinuous function, and their importance in the study of differentiation of an integral.
- The extension theorem of Caratheodary.
- Product measure and Fubinitheorem.

Unit I

Algebras of sets - Borel sets. Outer measure, Measurable sets and Lebesgue measure. Example of a non-measurable set. Measurable functions.

(12 Hours)

Unit II

The Riemann integral, The Lebesgue integral of a bounded function over a set of finite measure, The integral of a nonnegative function, The general Lebesgue integral.

(12 Hours)

Unit III

Differentiation and Integration, Differentiation of monotone functions, Functions of bounded variation, Differentiation of an integral, Absolute continuity.

(12 Hours)

Unit IV

Measure and outer measure, The extension theorem of Caratheodary, The product measures, The Fubini theorem.

(12 Hours)

References

- [1] H. L. Royden, *Real Analysis*, 3rd Ed., Prentice Hall, 2003.
- [2] G. D. Barra, *Introduction to Measure Theory*, Van Nostrand Reinhold Company Ltd., 1974.
- [3] Walter Rudin, *Real and Complex Analysis*, 3rd Ed., Tata McGraw Hill Publishing Company, 1987.
- [4] P. R. Halmos, Measure Theory, Springer Verlag, 1974.
- [5] F. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer Verlag, 1965.
- [6] Inder K. Rana, An Introduction to Measure and Integration, 2nd Ed., Narosa Publishing House, 1997.