

DEPARTMENT OF STATISTICS

MSc STATISTICS

Soft Core	STS557 : DATA MINING	No. of credits :3
	TECHNIOUES	

Course Outcomes:

CO1:	Design data warehouse with dimensional modelling and apply OLAP operations.	
CO2:	Gain knowledge about basic concepts of Machine Learning and Identify machine learning techniques suitable for a given problem	
CO3:	Compare and evaluate different data mining techniques like classification,	
	prediction, clustering and association rule mining	
CO4:	Apply Dimensionality reduction techniques.	
CO5:	To assess the strengths and weaknesses of the different algorithms, identify the application area of algorithms and apply them.	
CO6:	Apply data mining techniques as well as methods in integrating and interpreting	
	the data sets and improving effectiveness, efficiency and quality for data analysis.	

<u>Unit I</u>

Data Mining – motivations and importance, Knowledge Discovery in Databases (KDD) process - search, induction, querying, approximation and compression. Kinds of data considered for data mining, basic data mining tasks, data mining issues, Data Mining models - predictive and descriptive, inter-connections between Statistics, Data Mining, Artificial Intelligence and Machine Learning. Applications tof data mining. (10 hrs)

<u>Unit II</u>

Data marts, databases and data warehouses - OLTP systems, multidimensional models – data cubes, OLAP operations on data cubes, multidimensional schemas.

Data pre-processing – data cleaning, data integration, data transformation and data reduction. Visualisation techniques for multidimensional data - scatter plot matrix, star plots, Andrews plots, Chernoff faces, parallel axis plots. (10 hrs)

<u>Unit III</u>

Supervised learning – classification and prediction, statistical classification-Linear Discriminants-Mahalanobis' linear discriminant, Fisher's linear discriminant; Bayesian classifier, Regression based classification, k-NN(nearest neighbour) classifier. Tree classifiers-decision trees, ID3 algorithm CART. (08 hrs)

<u>Unit IV</u>

Unsupervised learning – Clustering problem, similarity and distance measures, Partitioning algorithms-k-means & k-medoids(PAM) algorithms. Density based clustering algorithms (DBSCAN). (06hrs)

<u>Unit V</u>

Computational methods useful in datamining: Expectation-Maximisation (EM) algorithm, Genetic algorithm, Markov Chain Monte Carlo(MCMC) method. Resampling Techniques - Gibbs sampler, Bootstrap sampling, (06 hrs)

References:

- 1. Jiawei Han, Micheline Kamber: (2002): Data Mining-Concepts and Techniques, Morgan Kaufman Publishers, U.S.A
- 2. Margaret.H.Dunham (2005): Data Mining-Introductory and Advanced Topics, Pearson Education.
- 3. Trevor Hastie, Robert Tibshirani & Jerome Friedman (2001):The Elements of Statistical Learning: Data Mining, Inference and Prediction, Springer, New York,
- Michael Berthold, David J. H and (Eds): (2003) Intelligent Data Analysis - An Introduction (2nd Ed), Springer.
- J.P. Marques de Sa: (2001):Pattern Recognition Concepts, Methods and Applications, Springer 6.
- 6. Rajan Chattamvelli: (2009): Data Mining Methods, Narosa Publishing House.