DEPARTMENT OF M.Sc. COMPUTER SCIENCE

CSH 453: ADVANCEDD DATABASE SYSTEMS			
Hours/Week: 4		I.A. Marks: 30	
Credits: 4		Exams. Marks: 70	
Course Outcomes:			
CO1: Explain the features of database management systems and Relational database.			
CO2: Design conceptual models of a database using ER modelingfor real life applications			
and also construct queries in Relational Algebra.			
CO3: Create and populate a RDBMS for a real life application, with constraints and keys, using SQL.			
CO4: Retrieve any type	-		
in SQL.			
CO5: Analyze the exist	Analyze the existing design of a database schema and apply concepts of		
normalization to design an optimal database.			
CO6: Build indexing mechanisms for efficient retrieval of information from a database.			
	UNIT-I	12 Hrs.	
OBJECT AND OBJECT RELATIONAL DATABASES: Concepts for Object Databases:			
Object Identity – Object structure – Type Constructors – Encapsulation of Operations –			
Methods - Persistence - Type and Class Hierarchies - Inheritance - Complex Objects -			
Object Database Standards, Languages and Design: ODMG Model - ODL -OQL - Object			
Relational and Extended – Relational Systems: Object Relational features in			
SQL/Oracle – Case Studies.			
	UNIT-II	12 Hrs.	

PARALLEL AND DISTRIBUTED DATABASES: Database System Architectures: Centralized and Client-Server Architectures – Server System Architectures – Parallel Systems-Distributed Systems – Parallel Databases: I/O Parallelism – Interand Intra Query Parallelism – Inter and Intra operation Parallelism – Design of Parallel Systems-Distributed Database Concepts - Distributed Data Storage – Distributed Transactions – Commit Protocols – Concurrency Control – Distributed Query Processing – Case Studies

UNIT-III	12 Hrs.

INTELLIGENT DATABASES: Active Databases: Syntax and Semantics (Starburst, Oracle, DB2)- Taxonomy- Applications Design Principles for Active Rules- Temporal Databases: Overview of Temporal Databases-TSQL2- Deductive Databases: Logic of Query Languages – Datalog- Recursive Rules-Syntax and Semantics of Datalog Languages- Implementation of Rules and Recursion- Recursive Queries in SQL- Spatial Databases- Spatial Data Types-Spatial Relationships- Spatial Data Structures Spatial Access Methods-Spatial DB Implementation.

UNIT-IV 12 Hrs.

ADVANCED DATA MODELS: Mobile Databases: Location and Handoff Management - Effect of Mobility on Data Management -Location Dependent Data Distribution - Mobile Transaction Models -Concurrency Control -Transaction Commit Protocols- Multimedia Databases- Information Retrieval- Data Warehousing-Data Mining- Text Mining.

EMERGING TECHNOLOGIES: XML Databases: XML-Related Technologies-XML Schema- XML Query Languages- Storing XML in Databases-XML and SQL- Native XML Databases- Web Databases- Geographic Information Systems- Biological Data Management-Cloud Based Databases: Data Storage Systems on the

Cloud- Cloud Storage Architectures-Cloud Data Models- Query Languages- Introduction to Big Data-Storage-Analysis.

REFERENCE BOOKS:

- 1. Elmasri and Navathe, **Fundamentals of Database Systems** 5th Edition, Addison-Wesley, 2007.
- 2. Raghu Ramakrishnan and Johannes Gehrke, **Database Management Systems** ,3rd Edition, McGraw-Hill, 2003.
- 3. **Data Base System Concepts,** Silberschatz, Korth and Sudharshan, 5th Edition, McGraw Hill, 2006.
- 4. C.J. Date, A. Kannan, S. Swamynatham, **An Introduction to Database Systems**, 8th Edition, Pearson Education, 2006.