Reg. No. \square
CMH 405

First Semester M.Com. Degree Examination, December 2018 (CBCS) (New Syllabus) COMMERCE
 Management Science

Time : 3 Hours
Max. Marks : 70
Note : Non-programmable calculator and present value table are allowed.
SECTION - A

Note : Answer any four questions out of seven, each question carries 10 marks, answer to each question should not exceed 4 pages.

1. Explain the significance and scope of $O R$ in modern management.
2. Define Linear Programming. What are its essential characteristics ?
3. What is an unbalanced transportation problem ? Illustrate.
4. A firm manufactures two products A and B. Products are produced and sold on a weekly basis. The weekly production cannot exceed 25 for product A and 35 for product B because of limited available facilities. The company employs total of 60 workers. Product A requires 2 man weeks of labour, while B one man week of labour. Profit margin on A is Rs. 60 and on B is Rs. 40 . Formulate the problem.
5. Solve the following LPP using Graphical Procedure.

Maximise $Z=10 x_{1}+5 x_{2}$
Subject to $4 x_{1}+5 x_{2} \leq 100$

$$
5 x_{1}+2 x_{2} \leq 80
$$

$x_{1}, x_{2} \geq 0$
6. Solve the following transportation problem using Matrix Minimum Method.

Steel mills		A	B	C	D	Availability
Ports	A	50	60	100	50	20,000
	B	80	40	70	50	38,000
	C	90	70	30	50	16,000
Demand		10,000	18,000	22,000	24,000	74,000

7. Find the initial basic feasible solution to the following assignment model.

Contractors	Projects					
		Spring	Monsoon	Hot	Winter	
	M	2	10	9	7	
	N	13	4	14	8	
	O	13	14	16	11	
	P	4	15	13	9	

SECTION - B
Note : Answer any two questions out of three questions, each question carries
15 marks, answer to each question should not exceed 7 pages. ($15 \times 2=30$)
8. Explain various methods of solving transportation problem. Which is the best method of solving it and why?
9. A project has the following time schedule

Activity	times (weeks)	Activity	times (weeks)
$1-2$	2	$3-7$	5
$1-3$	2	$4-6$	3
$1-4$	1	$5-8$	1
$2-5$	4	$6-9$	5
$3-6$	8	$7-8$	4
$8-9$	3		

Construct PERT network and compute critical path and its duration.
10. The following table gives data on normal time and cost and crash time and cost for a project.

Activity	Normal		Crash	
	Time (days)	Cost (Rs.)	Time (days)	Cost (Rs.)
$1-2$	6	600	4	1000
$1-3$	4	600	2	2000
$2-4$	5	500	3	1500
$2-5$	3	450	1	650
$3-4$	6	900	4	2000
$4-6$	8	800	4	3000
$5-6$	4	400	2	1000
$6-7$	3	450	2	800

The indirect cost per day is Rs. 100.
a) Draw the PERT network and identify the critical path.
b) What are the normal project duration and associated cost ?
c) Crash the critical activities systematically and determine the optimum project completion time and cost.

