Reg. No.									
----------	--	--	--	--	--	--	--	--	--

BCH 501

III Semester M.Sc. Degree Examination, December 2018 BIOCHEMISTRY Molecular Biology

Time: 3 Hours Max. Marks: 70

Note: Answer Part – **A** and **any five** of the Part – **B**.

PART – A

1. Answer **any ten** of the following.

 $(10 \times 2 = 20)$

- a) Distinguish between prokaryotic and eukaryotic RNA polymerase.
- b) How inteins are different from introns?
- c) What are topoisomerases? Mention their significance.
- d) What is N end rule?
- e) Enlist the differences between prokaryotic and eukaryotic replication.
- f) Write the mechnism of action of ligase.
- g) Write any two transcription inhibitors.
- h) What is Shine-Dalgarno sequence? Mention its significance.
- i) Name any two stop codons.
- j) What are homeotic genes? Give an example.
- k) Define triplet binding assay.
- I) What is θ (theta) mode of replication?

(5+5=10)

(5+5=10)

PART - B

 $(5 \times 10 = 50)$ Answer **any five** of the following. 2. a) Explain the mechanism of ubiquitin mediated protein degradation. b) Write a note on the role of chaperones in protein folding. (5+5=10)3. a) Discuss the role of upstream AUG codons in gene regulation. b) Write an account on the initiation of protein synthesis in eukaryotes. (5+5=10)4. a) Write on the termination of transcription in prokaryotes. b) Explain the mechanism of regulation of lac-operon. (5+5=10)5. a) Discuss the rolling circle model of replication. b) Give an account on the mechanism of initiation of replication in prokaryotes. (5+5=10)6. a) Write a note on the regulation of tryptophan operon. b) Describe in detail about the contribution of Khorana and Nirenberg in deciphering the genetic code. (5+5=10)7. a) Explain the mechanism of QB virus RNA synthesis.

b) Write in detail about the role of snail and twist in protein patterning . (5+5=10)

8. a) How proteins are O-glycosylated? Explain.

9. Write short note on any two:

b) Eukaryotic ribsosomes

c) Meselson and Stahl experiment.

a) Transcription factors

b) Enlist the universal features of genetic code.