Reg. No. \square
MT 401

First Semester M.Sc. Degree Examination, December 2018/January 2019 MATHEMATICS
 Algebra - I (Repeaters)
 Choice Based Credit System - Old Syllabus

Time : 3 Hours
Max. Marks : 70
Note: 1) Answer any five full questions.
2) Answer to each full question shall not exceed eight pages of the answer book. No additional sheets will be provided for answering.
3) Use of scientific calculator is permitted.

1. a) Define group and subgroup.

If a, b, c are the elements of a group G then show that
i) $\mathrm{ab}=\mathrm{ac} \Rightarrow \mathrm{b}=\mathrm{c}$
ii) $\mathrm{ba}=\mathrm{ca} \Rightarrow \mathrm{b}=\mathrm{c}$
b) Prove that in a group
i) The identity element is unique
ii) Every element has unique inverse.
c) Let S be the set of all real numbers except -1 then prove that S is a group with operation * defined by $\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}+\mathrm{ab}$.
2. a) Prove that the set S of integers n such that $x^{n}=1$ is a subgroup of z^{+}.
b) State and prove Lagrange's theorem.
c) Prove that the homomorphism $\phi: \mathrm{G} \rightarrow \mathrm{G}^{\prime}$ carries the identity to the identity and inverse to inverse.
3. a) Prove that the subgroup H of a group G is normal if and only if every left coset is also a right coset. Further show that if H is normal then $\mathrm{aH}=\mathrm{Ha}$ for every $\mathrm{a} \in \mathrm{G}$.
b) Prove that if N is a normal subgroup of a group G then the product of two cosets aN and bN is again a coset.
P.T.O.
4. a) Prove that every rigid motion is a translation, a rotation, a reflection, a glide reflection or the identity.
b) Prove that the dihedral group D_{n} is generated by two elements x, y which satisfy the relations $x^{n}=1, y^{2}=1$ and $y x=x^{-1} y$.
5. a) Let H and K be subgroups of a group G . Then prove that the index of $\mathrm{H} \cap \mathrm{K}$ in H is atmost to the index of K in G .
b) Prove that the group $\mathrm{GL}_{2}\left(\mathrm{~F}_{2}\right)$ of invertible matrices with modulo 2 coefficients is isomorphic to the symmetric group S_{3}.
6. a) Prove that the center of a p-group has order $p>1$.
b) Prove that every group of order p^{2} is abelian.
c) If U be a subset of a group G then prove that the order of the stabilizer stab (U) of U for the operation of left multiplication divides the order of U.
7. a) Prove that there are exactly two isomorphism classes of groups of order 6 which are the classes of cyclic group C_{6} and of the dihedrarl group D_{3}.
b) Let K be a subgroup of G whose order is divisible by P and let H be a sylow p-subgroup of G. Then show that there is a conjugate subgroup $\mathrm{H}^{\prime}=\mathrm{gHg}^{-1}$ such that $\mathrm{K} \cap \mathrm{H}^{\prime}$ is a Sylow subgroup of K .
8. a) Prove that every group of order 15 is cyclic.
b) Prove that every permutation p not the identity is a product of cyclic permutations which operate on disjoint sets of indices p : $\sigma_{1} \sigma_{2} \cdots . \sigma_{k}$ and these cyclic permutations σ_{r} are uniquely determined by p.
9. a) Define a ring.

Let R be a ring with $1=0$ then prove that R is the zero ring.
b) Let R denote the ring of continuous real valued functions on \mathbb{R}^{n}. Prove that the map $\phi: \mathbb{R}\left[x_{1}, x_{2}, \ldots, x_{n}\right] \rightarrow R$ sending a polynomial to its associated polynomial function is an injective homomorphism.
10. a) If F is a filed then prove that every ideal in the ring $F(x)$ of polynomials in a single variable x is a principal ideal.
b) Define integral domain and maximal ideal prove that the Kernel of π_{1} is either zero or else it is a maximal ideal.

