Reg. No.

MT 404

Max. Marks: 70

First Semester M.Sc. Degree Examination, December 2018/January 2019 MATHEMATICS Topology (Repeaters) Choice Based Credit System – Old Syllabus

Time : 3 Hours

Note : 1) Answer **any five full** questions.

- 2) Answer to **each full** question shall **not** exceed **eight** pages of the answer book. **No** additional sheets will be provided for answering.
- 3) Use of scientific calculator is permitted.
- 1. a) Define a topology on a set X. Define the finite complement topology on a set X and verify that it is a topology on X.
 - b) Define a subbasis S for a topology on a set X and the topology T generated by S on X, Prove that T equals the intersection of all topologies on X that contains S.
 - c) Define the standard topology and the lower limit topology on ℝ. Are they comparable ? Justify your answer. (5+5+4)
- a) Define a simple order on a set X and the order topology on a simply ordered set. If R is the real line in the usual order, prove that a basis for the dictionary order topology on R × R is given by the collection of all open intervals of the form (a × b, a × d), where b < d.
 - b) Let X be an ordered set in the order topology; let Y be a subset of X that is convex in X. Prove that the order topology on Y is the same as the topology Y inherits as a subspace of X.
 - c) Let Y be a subspace of a topological space X. Prove that a set A is closed in Y if and only if $A = C \cap Y$ for some set C closed in X. (5+5+4)
- 3. a) For a subset A of a topological space X, define the closure \overline{A} of A. Prove that $x \in \overline{A}$ if and only if every open set U containing x intersects A.
 - b) Define a Hausdorff space. Prove that a space X is Hausdorff if and only if the diagonal $\Delta = \{x \times x : x \in X\}$ is closed in the product space $X \times X$.
 - c) Define the notion of convergence of a sequence in a space X. In a Hausdorff space X, prove that a sequence of point of X converges to at most one point of X.
 (5+5+4)

- 4. a) Define a continuous map f : X → Y of a topological space into the other. Prove that the following statements are equivalent for a map f : X → Y.
 - i) f is continuous.
 - ii) $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset A of X.
 - iii) $f^{-1}(C)$ is closed in X whenever C is closed in Y.
 - b) Let $f : A \to X \times Y$ given by the equation $f(a) = (f_1(a), f_2(a))$, where A, X, Y are spaces. Then prove that f is continuous if and only if the functions $f_1 : A \to X$ and $f_2 : A \to Y$ are continuous. (9+5)
- 5. a) Let $X = A \cup B$, where A and B are closed in X. Let $f : A \rightarrow Y$ and $g : B \rightarrow Y$ be continuous such that f(x) = g(x) for every $x \in A \cap B$. Prove that f and g can be combined to obtain a continuous function $h : X \rightarrow Y$.
 - b) Let $\{X_{\alpha}\}$ be an indexed family of topological spaces; let $A_{\alpha} \subseteq X_{\alpha}$ for each α . If $\prod_{\alpha} X_{\alpha}$ is given either product topology or box topology, then prove that

$$\left(\prod_{\alpha} \mathsf{A}_{\alpha}\right) = \prod_{\alpha} \overline{\mathsf{A}_{\alpha}} \ .$$

- c) Let X be a metrizable space and A be a subset of X. If $x \in \overline{A}$, then prove that there is a sequence of points of A converging to x. (3+7+4)
- 6. a) Consider ℝ[∞], the countably infinite product of ℝ with itself. Let f : ℝ → ℝ[∞] be a function given by the equation f (t) = (t, t, t, . . .). Discuss the continuity of f when ℝ[∞] is given the product topology and also when ℝ[∞] is given the box topology.
 - b) Let $f_n : X \to Y$ be a sequence of continuous functions from the topological space X into the metric space Y. If (f_n) converges uniformly to f, then prove that f is continuous. (7+7)
- 7. a) Define a connected topological space. Prove that the image of a connected space under a continuous map is connected.
 - b) Prove that the union of a collection of connected subspaces of X that have a point in common is connected.
 - c) Prove that the finite product of connected spaces is connected. (4+5+5)

- 8. a) Define a linear continuum. If L is a linear continuum in the order topology, then prove that L is connected.
 - b) If X is a simply ordered set having the least upper bound property, then prove that each closed interval in X is compact in the order topology. (7+7)
- 9. a) Prove that every compact subspace of a Hausdorff space is closed.
 - b) Let X be a space and Y be a compact space. If N is an open subset of the product space X × Y containing the slice $x_0 \times Y$ of X × Y, then prove that N contains some tube W × Y about $x_0 \times Y$, where W is a neighbourhood of x_0 in X.
 - c) Show that a finite union of compact subspaces of X is compact. (6+4+4)
- 10. a) Define a limit point compact space. Prove that every compact space is limit point compact.
 - b) Define a sequentially compact space. If a metrizable space is sequentially compact, then prove that it is compact. (5+9)