Reg. No. $\square$
MT 503

# Third Semester M.Sc. Degree Examination, December 2018/January 2019 MATHEMATICS (Repeaters) Ordinary Differential Equations Choice Based Credit System - Old Syllabus 

Time : 3 Hours
Max. Marks : 70
Note: 1) Answer any five full questions.
2) Answer to each full question shall not exceed eight pages of the answer book. No additional sheets will be provided for answering.
3) Use of scientific calculator is permitted.

1. a) If $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$ are solutions of $L_{n}(x)=0$ then prove they are linearly independent if and only if $w\left[x_{1}, x_{2}, \ldots, x_{n}\right](t) \neq 0, \forall t \in l$.
b) Compute the Wronskian of $t^{2}$ and $t|t|$ on $R$ and show that they are linearly independent on $R$.
c) Solve $x^{\prime \prime}+x^{\prime}=$ sint.
2. a) If $\Phi_{1}$ is a solution of $\mathrm{a}_{0}(\mathrm{t}) \mathrm{x}^{\prime \prime}+\mathrm{a}_{1}(\mathrm{t}) \mathrm{x}^{\prime}+\mathrm{a}_{2}(\mathrm{t}) \mathrm{x}=0$ on I and if $\Phi_{1}(\mathrm{t}) \neq 0, \forall \mathrm{t} \in \mathrm{I}$.

Show that $\Phi_{2}(\mathrm{t})=\Phi_{1}(\mathrm{t}) \int_{\mathrm{t}_{0}}^{t} \frac{1}{\left(\phi_{1}(\mathrm{~s})\right)^{2}} \exp \left[\int_{\mathrm{t}_{0}}^{\mathrm{s}} \frac{-\mathrm{a}_{1}(\xi)}{\mathrm{a}_{0}(\xi)} \mathrm{d} \xi\right] \mathrm{ds}$ is another solution.
Further show that $\Phi_{2}(1)$ and $\Phi_{2}(\mathrm{t})$ are linearly independent on I.
b) Describe the method of variation of parameters to find the general solution of $L_{n}(x)=b(t)$.
3. a) Obtain the series solution of Legendre equation $\left(1-t^{2}\right) x^{\prime \prime}-2 t x^{\prime}+p(p+1) x=0$.
b) State and prove orthogonality property for Legendre polynomials.
4. a) Obtain the series solution of $t^{2} x^{\prime \prime}-t x^{\prime}+\left(t^{2}-\alpha^{2}\right) x=0, t>0$. Where $\alpha$ is the constant.
b) State and prove the orthogonality of Bessel's polynomial.

## MT 503

5. a) Find the solution of Legendre differential equation
$\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\alpha(\alpha+1) y=0$.
b) Prove that $\left[J_{\frac{1}{2}}(t)\right]^{2}+\left[J_{-\frac{1}{2}}(t)\right]^{2}=\frac{2}{\pi t}, t>0$.
6. a) Let $A(t)$ be a $n \times n$ continuous matrix function defined on a closed and bounded interval I. Then show that those exists a solution to the IVP $x^{\prime}=A(t) x$, $x\left(t_{0}\right)=x_{0}$ where $t, t_{0} \in I$. Further show that this solution is unique.
b) Find the fundamental matrix for $x^{\prime}=A(t) x$ where $A=\left[\begin{array}{cc}3 & -2 \\ -2 & 3\end{array}\right]$.
7. a) Find the first four Picard's approximation of the initial value problem $x^{\prime}=t+x, x(0)=1$. Further find the limit of these approximations.
b) Let $A(t)$ be an $n \times n$ continuous matrix defined on $(-\infty, \infty)$ and periodic with period w . If $\phi(\mathrm{t})$ is a fundamental matrix of $\mathrm{x}^{\prime}=\mathrm{A}(\mathrm{t}) \mathrm{x}$, then prove that $\phi(\mathrm{t}+\mathrm{w})$ is also a fundamental matrix. Justify that for any such $\phi(\mathrm{t})$, there exists a periodic nonsingular matrix $p(t)$ with period $w$ and a constant matrix $R$ such that $\phi(t)=P(t) e^{t R}$.
8. a) If $A$ is an $n \times n$ constant matrix, find a fundamental matrix of $x^{\prime}=A(t) x$, by considering the cases where the eigenvalues of $A$ are all distinct.
b) State Lipschitz condition with respect to $x$ for a function $f(t, x)$ defined on domain $D$ on $R^{2}$. Give sufficient condition for $f(t, x)$ to satisfy a Lipschitz condition. Discuss the necessary part for $f(t, x)$ to satisfy a Lipschitz condition.
9. a) Solve $x^{\prime \prime}+4 x=t, 0 \leq t \leq 3$, subject to the boundary conditions $x(0)=0, x^{\prime}(3)=0$ by determining the Green's function.
b) State Sturm-Liouville boundary value problem with separated or periodic boundary conditions. Find the eigenvalues and the associated eigen functions of the Sturm-Liouville problem : $x^{\prime}+\lambda x=0,0<t<L, x^{\prime}(0)=0$, $h x(L)+x^{\prime}(L)=0 h>0$.
10. a) Expand the function $f(t)=\pi t-t^{2}, 0 \leq t \leq \pi$ in terms of the eigenfunctions of Sturm-Liouville problem : $x^{\prime \prime}+\lambda x=0 . x(0)=x(\pi)=0$.
b) Show that the eigenvalues of a Sturm-Liouville boundary value problem are real.
