\square

First Semester M.Sc. Degree Examination, December 2018/January 2019 MATHEMATICS
Real Analysis - I
Choice Based Credit System - New Syllabus
Time : 3 Hours
Max. Marks : 70

Note: 1) Answer any five full questions.
 2) Answer to each full question shall not exceed eight pages of the answer book. No additional sheets will be provided for answering.

3) Use of scientific calculator is permitted.
1. a) State the least upper bound property. Prove that an ordered set having the least upper bound property also has the greatest lower bound property.
b) For every real $\mathrm{x}>0$ and every integer $\mathrm{n}>0$ prove that there is only one real y such that $y^{n}=x$.
c) Let A be a nonempty set of real numbers which is bounded below. Then prove that $\inf A=-\sup (-A)$.
2. a) Define a countable set. Prove that the set \mathbb{Z} of all integers is countable.
b) Prove that the set of all sequences whose elements are the digits 0 and 1 is uncountable.
c) Define an algebraic number. Prove that the set of all algebraic numbers is countable.
3. a) Define a metric space. Prove that $\mathrm{d}(\mathrm{x}, \mathrm{y})=\frac{|\mathrm{x}-\mathrm{y}|}{1+|\mathrm{x}-\mathrm{y}|}$, is a metric on \mathbb{R}.
b) Prove that every neighbourhood of a point in a metric space is open.
c) Show that an arbitrary intersection of open sets need not be open in a metric space.
4. a) Define a compact space. Prove that compact subsets of metric spaces are closed.
b) Prove that every nonempty perfect set in \mathbb{R}^{k} is uncountable.
c) Prove that a subset E of \mathbb{R} is connected if it is an interval.
5. a) Define a sequence. Prove that every convergent sequence in a metric space is bounded. How about the converse? Justify.
b) Prove that every bounded sequence in \mathbb{R}^{k} contains a convergent subsequence.
c) Prove the following :
i) $\lim _{n \rightarrow \infty} \sqrt[n]{n}=1$
ii) If $|\mathrm{x}|<1$, then $\lim _{n \rightarrow \infty} x^{n}=0$.
6. a) Suppose $a_{n} \geq a_{n+1}$ and $a_{n} \geq 0$ for $n=1,2, \ldots$ Then prove that the series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the series $\sum_{k=0}^{\infty} 2^{k} a_{2} k$ converges.
b) Define the number e. Prove that $\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e$.
c) Investigate the behaviour of the following series:
i) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{n}$
ii) $\frac{1}{2}+\frac{1}{3}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\ldots$.
7. a) Prove that a mapping f of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
b) Prove that a continuous mapping of a compact metric space X into a metric space Y is uniformly continuous.
c) If f is a continuous real function on a metric space X, show that the set, $\{x \mid f(x)=0\}$ is closed.
8. a) If f and g are continuous real functions on $[a, b]$ which are differentiable on (a, b), then prove that there is a point $x \in(a, b)$ such that $[f(b)-f(a)] g^{\prime}(x)=[g(b)-g(a)] f^{\prime}(x)$.
b) State and prove the Taylor's theorem.
c) Suppose f is defined in a neighbourhood of x and suppose $f^{\prime \prime}(x)$ exists. Show that $\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)-2 f(x)}{h^{2}}=f^{\prime \prime}(x)$.
