Reg. No.

MTH 504

Max. Marks: 70

Third Semester M.Sc. Degree Examination, December 2018/January 2019 MATHEMATICS Multivariate Calculus and Geometry (Choice Based Credit System – New Syllabus)

Time : 3 Hours

- Note: 1) Answer any five full questions.
 - 2) Answer to **each full** question shall **not** exceed **eight** pages of the answer book. No additional sheets will be provided for answering.
 - 3) Use of scientific calculator is permitted.
- 1. a) Identify geometrically and sketch the level set F^{-1} (C), where $F(x, y, z) = (z^2 x^2 y^2, 2x y)$ and C = (1, 2). From your sketch determine whether the level set is open, closed, bounded, compact.
 - b) Find the tangent plane and normal line to the set of points satisfying $y^2 + z^2 2x^2 = 2$ and xyz = 2 at the point $(1, \sqrt{2}, \sqrt{2})$.
 - c) Let $S_1 = \{(x, y, z) \in \mathbb{R}^3 : y = f(x)\}$ denote a cylinder and S_2 denote the level set $z^2 + 2zx + y = 0$. If S_1 is tangent to S_2 at all points of contact find f. (5+5+4)
- 2. a) State and prove the theorem on method of Lagrange multipliers to find the maxima/minima of a real valued function with constraints.
 - b) Classify the non-degenerating critical points of f(x, y) = (2 x) (4 y) (x + y 3). (8+6)
- 3. a) Let $F : U \subset \mathbb{R}^n \to \mathbb{R}^n$ denote a continuous vector filed on the connected open set U of \mathbb{R}^n . Then prove that, F has a scalar potential if and only if for any two points A and B in \mathbb{R}^n and any two piecewise smooth directed curves Γ_1 and Γ_2 joining A and B, we have $\int_{\Gamma} F = \int_{\Gamma} F$.
 - b) Find the length of the curve parametrized by $P(t) = (2 \cosh 3t, -2 \sinh 3t, 6t), 0 \le t \le 5.$
 - c) Obtain the unit speed parametrization of the curve defined by;

 $t \rightarrow (e^t \cos t, e^t \sin t, e^t), t \in [0, 1].$ (7+3+4)

P.T.O.

MTH 504

- 4. a) Explain the geometric interpretation of the curvature of a curve in \mathbb{R}^2 .
 - b) If P : [a, b] $\rightarrow \Gamma$ is a unit speed parametrized curve, prove that $\langle P' \times P'', P''' \rangle = \kappa^2 \tau$ Further if $\tau \neq 0$, then show that $\tau = \frac{\langle P' \times P'' \times P''' \rangle}{\langle P'', P'' \rangle}$.
 - c) Let Γ is a directed curve in \mathbb{R}^3 with positive curvature at all points. Then prove that Γ is a plane curve if and only if its bi normal B(t) is constant for all t. (4+4+6)
- 5. a) State and prove Green's theorem.
 - b) Obtain a parametrization of Torus of major radius b and inner (minor) radius a.
 - c) Find the surface area of the paraboloid $z = x^2 + y^2$ which lies between the planes z = 0 and z = 4. (6+4+4)
- 6. a) Find $\iint_{S} F$ where F(x, y, z) = (1, 2, 3) and S is a triangle with vertices (1, 0, 0), (0, 2, 0) and (0, 0, 3) oriented so that the origin is on the negative side.
 - b) Verify the Stokes' theorem for the portion S of the surface $z = \tan^{-1}(y/x)$, which lies inside the cone $x^2 + y^2 = z^2$ and between the planes z = 0 and $z = 2\pi$, by using the vector field F(x, y, z) = (xz, yz, $-x^2 y^2)$. (6+8)
- 7. a) If V = {(x, y, z) : $0 \le x \le 1, 1 \le y \le 5, 2 \le z \le 3$ }, then evaluate;

 $\iiint_{v} x^{2}yz^{2} dx dy dz.$

- b) Find the volume of the region of \mathbb{R}^3 bounded by the plane z = 3 2y and the paraboloid $z = x^2 + y^2$.
- c) State Gauss' divergence theorem. Let V be the solid cylinder $\{(x, y, z) : x^2 + y^2 < 1, 0 < z < 1\}$ and $F(x, y, z) = (1 - (x^2 + y^2)^3, 1 - (x^2 + y^2)^3 x^2 z^2)$. Use divergence theorem to evaluate $\iiint div(F)dx dy dz$. (2+6+6)
- 8. a) At an umbilic point p of a surface S, prove that;
 - i) K(p) > 0 if and only if S is shaped like a sphere near p.
 - ii) K(p) = 0 if and only if S is very flat near p.
 - b) Define the geodesic curvature of a directed curve Γ on an oriented surface S. Show that, a parameterized curve P : [a, b] $\rightarrow \Gamma \in S$ is geodesic if and only if it has a constant speed and zero geodesic curvature. (7+7)