Reg. No.									
----------	--	--	--	--	--	--	--	--	--

CH/AC/OC/CAS 404

First Semester M.Sc. Degree Examination, December 2018
Chemistry/Applied Chemistry/Organic Chemistry/Analytical Chemistry
(CBCS: 2016-17 Syllabus)

INORGANIC SPECTROSCOPY AND ANALYTICAL TECHNIQUES

Time: 3 Hours Max. Marks: 70

Note: i) Answer Part – **A** and **any four** questions from Part – **B**.

ii) Figures to the right indicate marks.

PART – A

1. Answer the following questions:

 $(9 \times 2 = 18)$

- a) What is Zeeman effect and write the fundamental equation governing the EPR spectroscopy.
- b) How do you distinguish NQR from NMR? Define 'EFG' in NQR.
- c) Give the basic principle of X-ray photoelectron spectroscopy.
- d) Define the term 'ion-exchange capacity' and name the commercially available cation and anion exchange resins.
- e) What is procedural decomposition temperature?
- f) Sketch the TG and DTA curves for decomposition of CaC₂O₄. H₂O.
- g) Sketch Hallow cathode lamp used in AAS. Write its advantages.
- h) Write the limitations of flame photometry.
- i) What is the principle of light scattering method to determine the particle size?

PART - B

Answer any four full following questions:

 $(4 \times 13 = 52)$

- 2. a) Discuss the hyperfine splitting in EPR taking methyl radical (CH₃*) as an example.
 - b) Explain the basic principle and measurement technique involved in Mossbauer spectroscopy.
 - c) Explain basics of NQR spectroscopy.

(5+4+4=13)

CH/AC/OC/CAS 404

- 3. a) Elaborate on the quadrupolar splitting and magnetic splitting in Mossbauer spectra.
 - b) Discuss the zero-field splitting and Kramer's degeneracy in EPR.
 - c) Explain the instrumentation of X-ray photoelectron spectroscopy and sketch the spectra for any metal oxide sample. (5+4+4=13)
- 4. a) Give the synthesis of cation and anion exchange resins. Explain the basic features of ion-exchange reactions.
 - b) Explain the DSC curve of a crystalline polymer.
 - c) What are the applications of DTA technique?

(5+4+4=13)

- 5. a) Discuss the principle and instrumentation TGA.
 - b) What is resin selectivity? Explain the separation of lanthanides using ion exchanges.
 - c) Discuss the theory of gel permeation chromatography and mention the factors governing the column efficiency. (5+4+4=13)
- 6. a) Discuss the theory, principle and working of AAS.
 - b) Explain the analysis of metal ions by flame photometry.
 - c) What is fluorescence quenching? Explain the working of fluorimeter. (5+4+4=13)
- 7. a) Differentiate between Nephelometry and Turbidimetry.
 - b) Explain the principle and working of flame emission spectroscopy.
 - c) Discuss the interference in AAS. (5+4+4=13)
