MCAE314: SOFTWARE QUALITY ASSURANCE

Hours/Week: 3 I.A. Marks: 30 Credits: 3 Exam. Marks: 70

Course Learning Objectives: Students will able to try,

- 1. To study fundamental concepts in software testing, including software testing objectives, process, criteria, strategies, and methods.
- 2. To discuss various software testing issues and solutions in software unit test; integration, regression, and system testing.
- 3. To learn how to planning a test project, design test cases and data, conduct testing operations, manage software problems and defects, generate a testing report.
- 4. To expose the advanced software testing topics, such as object-oriented software testing methods, and component-based software testing issues, challenges, and solutions.

Course Outcomes: After completing the course, the students will be able to,

- CO1: Identify and apply various software metrics, which determines the quality level of software
- CO2: Identify and evaluate the quality level of internal and external attributes of the software product
- CO3: Compare and Pick out the right reliability model for evaluating the software
- CO4: Evaluate the reliability of any given software product
- CO5: Design new metrics and reliability models for evaluating the quality level of the software based on the requirement
- CO6: applying software testing knowledge and methods to practice-oriented software testing projects.
- CO7: understand software test automation problems and solutions.

UNIT-I 9 Hrs.

Software Quality: Basics, Popular Views, Quality Professional Views, Software Quality, Total Quality Management and Summary. Fundamentals of Measurement Theory: Definition, Operational Definition and Measurement, Level of Measurement, Some Basic Measures, Reliability and Validity, Measurement Errors, Criteria for Causality, Summary. Software Quality Metrics Overview: Product Quality Metrics, In-Process Quality Metrics, Metrics for Software Maintenance, Examples for Metrics Programs, Collecting Software Engineering Data.

UNIT-II 9 Hrs.

Applying The Seven Basic Quality Tools In Software Development: Ishikawa's Seven Basic Tools, Checklist, Pareo Diagram, Histogram, Run Charts, Scatter Diagram, Control Chart, Cause And Effect Diagram. The Rayleigh Model: Reliability Models, The Rayleigh Model Basic Assumptions, Implementation, Reliability And Predictive Validity.

UNIT-III 9 Hrs.

Complexity Metrics and Models: Lines of Code, Halstead's Software Science, Cyclomatic Complexity Syntactic Metrics, An Example of Module Design Metrics in Practice .Metric And Lessons Learned for Object Oriented Projects: Object Oriented Concepts and Constructs, Design And Complexity Metrics, Productivity Metrics, Quality And Quality Management Metrics, Lessons Learned For object oriented Projects. Availability Metrics: Definition and Measurement of System Availability, Reliability Availability and Defect Rate, Collecting Customer Outage Data for Quality Improvement, In-Process Metrics for Outage and Availability.

UNIT-IV 9 Hrs.

Conducting Software Project Assessment: Audit Ad Assessment, Software Process Maturity Assessment and Software Project Assessment, Software Process Assessment Software Process Improvement: Measuring Process Maturity, Measuring Process Capability, Staged Versus Continuous Debating Religion, Measuring the Value of Process Improvement, Measuring Process Compliance, Using Function Point Metrics to Measure Software Process Improvement: Software Process Improvement Sequences, Process Improvement Economies, Measuring Process Improvement at Activity Levels

REFERENCE BOOKS:

- 1. Stephen H Khan, Metrics and Models in Software Quality Engineering, Pearson 2nd edition 2013.
- 2. Norman E-Fentor and Share Lawrence Pflieger, Software Metrics, International Thomson, Computer Press 1997.
- 3. S.A. Kelkar, Software Quality and Testing Market,. PHI Learing, Pvt, Ltd 2012.

