• N	Number Theoretic Background
-----	-----------------------------

Course Outcome: To introduce the concepts and to develop working knowledge on fundamentals of Cryptography. Students will have the knowledge and skills to apply the concepts of the course in

Course Specific Outcome: At the end of the course students will have the knowledge and skills to

• Finite Fields and Quadratic Residues

Computer Applications including Cyber security.

• Cryptography, Public key

MTS 561

• Primality and Factoring

Unit I - Some Topics in Elementary Number Theory:

Cryptography

understand, explain in depth and apply the fundamental concepts-

Time estimates for doing arithmetic, Divisibility and Euclidean Algorithm, Congruences, Some Applications to Factoring.

(8 Hours) Unit II - Finite Fields and Quadratic Residues: Finite Fields, Quadratic residues and Reciprocity.

Unit III - Cryptography:

Some Simple cryptosystems, Enciphering matrices.

Unit IV - Public Key:

The Idea of Public Key Cryptography, RSA, Discrete Log, Knapsack, Zero-knowledge Protocols and Oblivious Transfer.

Unit-V - Primality and Factoring:

Pseudoprimes, The rho method, Fermat Factorization and Factor Bases, The Continued Fraction Method, The Quadratic Sieve Method.

(14 Hours)

(14 Hours)

(6 Hours)

(6 Hours)

References:

- [1] Neal Koblitz, *A course in Number Theory and Cryptography*, Springer Verlag, NewYork, 1987.
- [2] Hans Delfs, Helmut Knebl, Introduction to Cryptography, Springer Verlag, 2002.
- [3] William Stallings, *Cryptography and Network Security*, Prentice Hall of India, 2000.
- [4] Alfred J. Menezes, Paul C. Van Oorschot, Scott A. Vanstone, *Handbook of Applied Cryptography*, CRC Press, 2000.

MTS 562	Finite Element Method with Applications	4 Credits (48 hours)
MI3 302	I mile mement returba with applications	T CI Cuito (TO HOUIS)

Course Outcome: This course intended to understand and develop proficiency in the application of the finite element method to realistic problems in modeling, analysis, and interpretation.

Course Specific Outcome: At the end of the course students will have the knowledge and skills to understand, explain in depth and apply the fundamental concepts-

- Weighted Residual Approximations
- Finite Elements and Finite Element Procedures
- Finite Element solution of differential equations

Unit I - Weighted Residual Approximations:

Point collocation, Galerkin and Least Squares method. Use of trial functions to the solution of differential equations.

(12 Hours)

Unit II - Finite Elements:

One dimensional and two dimensional basis functions, Lagrange and serendipity family elements for quadrilaterals and triangular shapes. Isoparametric coordinate transformation. Area coordinates standard 2- squares and unit triangles in natural coordinates.

(12 Hours)

Unit III - Finite Element Procedures:

Finite Element Formulations for the solutions of ordinary and partial differential equations: Calculation of element matrices, assembly and solution of linear equations. (12 Hours)

Unit IV

Finite Element solution of one dimensional ordinary differential equations, Laplace and Poisson equations over rectangular and nonrectangular and curved domains. Applications to some problems in linear elasticity: Torsion of shafts of a square, elliptic and triangular cross sections.

References

- [1] O.C. Zienkiewiez and K. Morgan, Finite Elements and approximation, John Wieley, 1983
- [2] P.E. Lewis and J.P. Ward, *The Finite element method- Principles and applications*, Addison Weley, 1991
- [3] L.J. Segerlind, Applied finite element analysis, 2nd Ed, John Wiley, 1984
- [4] O.C. Zienkiewicz and R.L.Taylor, *The finite element method. Vol. 1- Basic formulation and Linear problems*, 4th Edition, New York, Mc. Graw Hill, 1989.
- [5] A.R. Mitchell and R. Wait, *Finite Element methods in Partial Differential Equations*, John Wiley, 1997.
- [6] J.N. Reddy, An introduction to finite element method, New York, Mc.Graw Hill, 1984.
- [7] D.W. Pepper and J.C. Heinrich : *The finite element method*, Basic concepts and applications, Hemisphere, Publishing Corporation, Washington, 1992.
- [8] S.S. Rao, The finite element method in Engineering, 2nd Edition, Oxford, Pergamon Press, 1989.
- [9] D. V. Hutton, Fundamental of Finite Element Analysis, Mc Graw Hill, 2004.
- [10] E. G. Thomson, Introduction to Finite Elements Method: Theory Programming and applications, Wiley Student Edition, (2005).
- [11] M.K. Jain, Numerical Solution of Differential Equations, 2nd Ed., Wiley Eastern, 1979.

Semester wise distribution of credits for M.Sc. Mathematics Programme

	Theory(HC ^a)		Theory (SC ^b)		Open Elective		Lab	Project	Total
SEM	No. of	Credits	No. of	Credits	No. of	Credits	Credits	Credits	Credits
	Courses		Courses		Courses		(SC ^b)	(HC ^a)	
Ι	3	4	2	4	-	-	2	-	22
II	3	4	2	4	1	3	2	-	22+3*
III	3	4	2	4	1	3	2	-	22+3*
IV	2	4	2	4	-	-	-	4	20
Total		44		32	-	6	6	4	86+6*

HC^a - Hard core, SC^b - Soft core, *Not included for CGPA

Total Hard Core Credits is 44+4=48 (55:81%) and total Soft Core Credits is 32+6=38 (44:19%).

(12 Hours)