BSS405 BIOCHEMICAL TECHNIQUES

Course Outcomes:

Upon successful completion of the course, students will be able to:

- CO 1. Know the principle and applications of basic biochemical techniques.
- CO 2. Understand the role of biological solutions and calculations
- CO 3. Understand principle, instrumentation, applications and types of chromatography
- CO 4. Know the principle, instrumentation, applications and types of centrifugation
- CO 5. Understand the principle, instrumentation, applications and types of electrophoretic techniques

Unit I (13 hours)

Biological Solutions: preparation of solutions-Normality, molarity and molality: Acids and Bases, Buffers, salting in, salting out, Osmosis, Dialysis, Donnan Membrane Equilibrium, Viscosity of macromolecules, relationship with conformational changes, Density. **Chromatography** Principles of partition chromatography, paper, thin layer, column chromatography, ion exchange and affinity chromatography, gas chromatography, gel permeation chromatography, HPLC andFPLC.

Unit II (13 hours)

Centrifugation Principles of centrifugation, Svedberg's constant, concepts of RCF, different types of instruments and rotors, preparative, differential and density gradient centrifugation, analytical ultra-centrifugation, determination of molecular weights and other applications, subcellular fractionation. Filtration methods: Invention of filtration method. Various types of filter membranes and their applications.

Unit III (13hours)

Electrophoretic techniques Principles of electrophoretic separation. Continuous, zonal and capillary electrophoresis, different types of electrophoresis including paper, cellulose, acetate/nitrate and gel. Electroporation, pulse field gel electrophoresis, PAGE, SDS- PAGE and Iso electro focusing.

References:

- 1. Pattabhi, V. & Gautham, N. (2003). Biophysics NarosaPublHouse,
- 2. Khopkar, S. M. (2008). Basic Concepts of Analytical Chemistry, 3rd Ed., New Age Publications.
- 3. Upadhyay, A., Upadhyay, K., Nath, N. (2009). Biophysical Chemistry-Principles and Techniques, Himalaya Publ House
- 4. Cantor, C.R., Schimmel, P.R. (1980)Biophysical Chemistry Part II. Techniques for the study of biological structureandfunction, W.H.Freeman
- 5. Lippard S. J., Berg, J. M. (1997). Principles of Bioinorganic Chemistry, Panama Publ.
- 6. Jackson M. B. (2006). Molecular & Cellular Biophysics, Cambridge University press.
- 7. van Holde, K. E., Johnson, W. C., Ho, P.S. (1998) Principles of Physical Biochemistry, PrenticeHall.
- 8. Freifelder D. (1982) Physical Biochemistry, 2ndEd.
- 9. Segal I. H. (1976) Biochemical calculation, 2ndEd.
- 10. Wilson, K. and Walker, J.(1996). Practical biochemistry.PrinciplesandTechniques. Cambridge Low PriceEditions
- 12. Shrikant, L. P. (2013) Understanding Biophysics. 4thEd., Suman Publications.
- 13. Krishna A. P. (2014) Text book of Medical Physiology, 2ndEd, Suman Publications.
- 14. Ghosal, S., &Avasthi, A. S. (2018).Fundamentals of bioanalytical techniques and instrumentation. PHI Learning Pvt. Ltd.
- 15. Gault, V. A., & McClenaghan, N. H. (2013). Understanding bioanalytical chemistry: principles and

applications. John Wiley & Sons.

- 16. Van Emon, J. M. (Ed.). (2016).Immunoassay and other bioanalytical techniques. CRC Press
- 17. Manz, A., Pamme, N., & Iossifidis, D. (2004). Bioanalytical chemistry. World Scientific Publishing Company.
- 18. Ramesh, V. (Ed.). (2019).Biomolecular and Bioanalytical Techniques: Theory, Methodology and Applications. John Wiley & Sons.
- 19. Hoppe, W., Lohmann, W., Markl, H., & Ziegler, H. (Eds.). (2012).Biophysics. Springer Science & Business Media.
- 20. Jackson, M. B. (2006). Molecular and cellular biophysics. Cambridge University Press.

