HARD CORE COURSE: GYH 453: Basics of Remote Sensing

Course Learning Outcomes

CO1: Understand the history and evolution of Remote Sensing.

CO2: Identify and uses of various sources of satellite imageries from web platforms.

CO3: Illustrate the features of remote sensing data.

CO4: Carry out image processing using different software.

CO5: Analyse spatial data from imageries.

CO6: Analyse the temporal changes from imageries and prepare various thematic maps.

Units	Course Content	Teaching
		Hours
1	Remote Sensing: Definition, electromagnetic radiation (EMR) and	
	electromagnetic spectrum, interaction of EMR with the atmosphere and	14
	with the surface feature. Atmospheric window, spectral signature of	
	common land covers (minerals, rocks, water, vegetation and urban area)	
	concept and types of resolutions. History of remote sensing.	
2	Fundamentals of Aerial Photography: Classification of aerial	
	photographs on the basis of height and tilt, components of the camera, film,	13
	aerial platforms. Elements of Aerial photo interpretation: Formats of	
	Imageries: Digital and Analog data	
3	Sensor & Platforms: Sensors: active and passive sensors, electro	
	mechanical and optical sensors. Platforms: types, characteristics, payload	14
	of launch vehicles, -SLV, PSLV, GSLV, AGSLV, orbit positioning issues,	
	errors induced due to platform disturbances. Microwave remote sensing:	
	thermal remote sensing, interferometry SAR, SLAR. Future of remote	
	sensing, Digital image processing, Organizations into remote sensing,	
4	Application of Remote Sensing: Disaster mitigation and management,	13
	geology, soil mapping, ocean resource mapping, EIA, wetland	
	management, forest resource management	

Essential Readings:

- 1. Bossler J.D (2002): Manual of Geospatial Science and Technology, Taylor and Francis, London.
- 2. Girard M.C and Girard C.M (2003): Processing of Remote Sensing Data, Oxford & IBH, New- Delhi.
- 3. John R. Jensen (2000): Remote Sensing of the environment: An earth resource perspective, Pearson publication.
- 4. Lilles and T M., and Kiefer R W., (2000): Remote Sensing and Image interpretation, New York,
- 5. John.Wiley and Sons. Pradip Kumar Guha (2013): Remote Sensing for the beginner, Third Edition, East-West Press, New Delhi.
- 6. Suresh S and Mani K., (2017): Application of Remote Sensing in understanding the relationship Between NDVI and LST, IJRET, Vol. 6, Issue: 02.