First Semester

MGH 401: Minerology and Geochemistry

Skills, employability and entrepreneurship: This subject is a good opportunity for students not only to know about the formation of mineral from elements, useful to indentify in the field. Students exit with course have skills to work in quarrying, mining, rock polishing, cement, silica/glass, sand mining, brick, ceramic, pottery and refractory industries. They will be exposed to start their own entrepreneurship. Students are encouraged to undergo internships after the regular offline classes as well as during the vacation.

Mineralogy			
Unit 1	Introduction to crystallography: Crystal systems and Elements of symmetry (32 classes). Principles of X-ray diffraction and its applications.	4 hrs	
Unit 2	Introduction and Principles of Mineralogy: Definition and importance of minerals for sustainable development. Properties of minerals: chemical, physical, electrical, magnetic and thermal.	4 hrs	
Unit 3	Principles of optical mineralogy: Introduction to optical mineralogy, polarized light and crossed nicols. Behaviour of isotropic and anisotropic minerals, refractive index, double refraction, birefringence, sign of elongation, interference figures, 2V, dispersion in minerals. Classification of minerals based on optical properties. Ore and ore forming minerals.	8 hrs	
Unit 4	Descriptive Mineralogy:Silicates-Structural classifications. Description of major rock forming minerals of the following groups;Olivine, Pyroxene, Amphibole, Garnet, Mica, Feldspar, Quartz, Aluminosilicate, Zeolites, Clay minerals. Interactive sessions of teaching to enhance students-teacher interactions through hands-on demonstrations and exercises in the recent advancement of the subject related to the curriculum.	10 hrs	
Geochemistry			
Unit 5	Introduction to geochemistry and cosmochemistry: Origin of elements and their abundance in the universe. Structure and atomic properties of elements, Periodic Table. Chemical and geochemical classification of elements. Meteorites and their applications. Composition of planets and the Earth's interior.	6 hrs	
Unit 6	Distribution of elements in igneous, sedimentary and metamorphic processes with an importance of magmatic and weathering and sedimentary processes. Aerosols, their composition, classification and importance. Brief geochemical aspects of soils and sediments.	6 hrs	
Unit 7	Biogeochemistry: Introduction and the current relevance of biogeochemistry. Principles of geochemical cycle including human activity in altering the earth system. Bio-geochemical cycles of carbon, nitrogen and phosphorous.	6 hrs	
Unit 8	Isotope geochemistry and principles of geochronology. Radioactive, stable isotopes and fission products; and their classifications, principles in determining ages of rocks, sediments, and applications in different fields of the earth science including paleoclimate.	8 hrs	

Interactive sessions of teaching to enhance students-teacher interactions	
through hands-on demonstrations and exercises in the recent	
advancement of the subject related to the curriculum.	

List of References:

- 1. Rock Forming Minerals Deer, Howie and Zussman: Longman Publishers (1983).
- 2. Text Book of Mineralogy J. D. Dana, E. S. Asia Publ House (1985).
- 3. Elements of X-ray Crystallography Azaraoff
- 4. Elements of Mineralogy Rutley CBS Publications
- 5. Elements of Optical Mineralogy Winchell, Wiley eastern Limited (1937).
- 6. Mineralogy Berry I. G. and Masson, B. Freeman and Co. (1959).
- 7. Introduction to Geochemistry Krauskopf, E. B. McGraw Hill (1979).
- 8. Principles of Geochemistry Brain Massan, Wiley eastern limited (1958).
- 9. Inorganic Geochemistry Henderson P (1982) Oxford Pergamon.
- 10. Hand Book of Geochemistry Goldchmidt, V. M. (1958).
- 11. Geochemistry Hammer Fmiza (2008).

Free online books

- 12. Fundamentals of Geochemistry, W. M. White<u>http://www.soest.hawaii.edu/krubin/GG325/</u> textbook/
- 13. Geochemistry Earth's System ProcessesDionisiosPanagiotaras Online | 512 Pages
- 14. Geochemistry Lecture Notes by Glen S. Mattioli and Ralph K. Davis
- 15. Geochemistry Lecture Notes W. M. Whit
- 16. Trace Element Geochemistry, Frederick Frey