Reg. No.

Credit Based Fourth Semester B.C.A. Degree Examination, September 2022 (Common to all Batches) COMPUTER ORIENTED NUMERICAL ANALYSIS (Elective – I)

Time : 3 Hours

- **Note** : i) Answer **any ten** questions from Part **A** and **one full** question from **each** Unit in Part **B**.
 - *ii)* Scientific calculator is allowed.

PART – A

- 1. a) Define Absolute and Relative Error.
 - b) Define Interpolation and Extrapolation.
 - c) If $Y_1 Y_0 = \delta Y_{\frac{1}{2}}$ then $\delta^{3}Y_{\frac{7}{2}}$.
 - d) Write the equation for fitting a straight line for $\partial S / \partial a_0$ and $\partial S / \partial a_1$.
 - e) Write the Simpson's 1/3 rule for $\int_{x_0}^{x_0} y \, dx$.
 - f) Write Newton's forward difference formula for $\left[\frac{dy}{dx}\right]x = x_0$ and $\left[\frac{d^2y}{dx^2}\right]x = x_0$.
 - g) Define upper triangular. Give example.

h) Given the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 find $||A||_2$.
i) Show that $A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is Orthogonal.

- j) Write Runge-Kutta 4th order formula.
- k) Write Milne's Predictor formula.
- I) Define square matrix. Give example.

BCACAC 264

(10×2=20)

Max. Marks: 80

- 2. a) Find the real root of the following equation: $f(x) = x^3 2x 5 = 0$ using Bisection method.
 - b) In the table below the values of y are consecutive terms of a series of which the number 21.6 is the 6th term. Find the first term of the series using Newton's forward difference interpolation formula.

Х	3	4	5	6	7	8	9
Υ	2.7	6.4	12.5	21.6	34.3	51.2	72.9

- c) Find the 7th term of the series 3, 9, 20, 38, 65 using Lagrange Interpolation formula. (5+5+5)
- 3. a) Use the method of Iteration to find a positive root, between 0 and 1 of the equation $xe^x = 1$.
 - b) Find a root of the equation $x \sin x + \cos x = 0$ using Newton-Raphson method.
 - c) Given the set of tabulated points (1, -3), (3, 9), (4, 30) and (6, 132). Obtain the value of y when x = 2 using Newton's divided difference Formula. (5+5+5)

Unit – II

4. a) Certain experimental values of x and y are given below.

Χ	0	2	5	7	
Υ	-1	5	12	20	
lf y =	a ₀ +	a, >	k, fir	id ap	proximate values of a_0 and a_1 .

b) Calculate the first and second derivatives of the function tabulated below at the point x = 2.2 using Newton's backward difference formula.

Х	1.0	1.2	1.4	1.6	1.8	2.0	2.2
Υ	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

- c) Evaluate $I = \int_{0}^{1} \frac{1}{1+x} dx$ by trapezoidal rule when h = 0.25, correct to three decimal places. (5+5+5)
- 5. a) Determine the constants a and b by the method of least squares such that $y = ae^{bx}$, fit the following the data.

X	2	4	6	8	10
у	4.077	11.084	30.128	81.897	222.62

b) From the following table of values of x and y, obtain $d(J_0)/dx$ and at x = 0.1 using Newton's forward difference formula.

X	0.0	0.1	0.2	0.3	0.4
J ₀ (x)	1.0000	0.9975	0.9900	0.9776	0.9604

c) Evaluate I =
$$\int_{1}^{3} \frac{1}{x} dx$$
 by Simpson's 1/3 rule with 4 strips. (5+5+5)

Unit – III

- 6. a) Express the matrix $A = \begin{bmatrix} 1 & 7 & 8 \\ 6 & 2 & 9 \\ 5 & 4 & 3 \end{bmatrix}$ as a sum of symmetric and a skew-symmetric
 - b) Solve the following system using Jacobi's method. Carry out 3 iterations. 10x + 2y + z = 9

2x + 20y - 2z = -44-2x + 3y + 10z = 22

c) Solve the following system using Gauss Elimination method.

2x + y + z = 103x + 2y + 3z = 18x + 4y + 9z = 16

(5+5+5)

7. a) Solve the following equations using matrix inversion method.

3x + y + 2z = 32x - 3y - z = -3x + 2y + z = 4

b) Solve the following system using Gauss-Jordan method.

$$5x - 2y + z = 4$$

 $7x + y - 5z = 8$
 $3x + 7y + 4z = 10$

c) Solve the following system using Gauss-Seidal method. Carry out 3 iterations. 10x + 2y + z = 9 2x + 20y - 2z = -44-2x + 3y + 10z = 22 (5+5+5)

BCACAC 264

Unit – IV

- a) Given (dy/dx)-1 = xy and y(0) = 1, obtain the Taylor's series for y(x) and compute y(0.1), correct to four decimal places.
 - b) Using Euler's method solve the differential equation (dy/dx) + 2y = 0, where h = 0.1 and obtain y (0.1), y(0.2).
 - c) Given (dy/dx) = y x where y(0) = 2, xo = 0 and h = 0.1. Find y(0.1) using Runge-Kutta fourth order formula. (5+5+5)
- 9. a) Using Adams-Moulton formula, solve y' = 1 + y² where y = 0 when x = 0, and h = 0.1. Find y (0.8). Given that y(0.1) = 0.0052, y(0.2) = 0.0214, y (0.3) = 0.0499.
 - b) Using Milne's formula solve $y' = 1 + y^2$ where y(0) = 0, and h = 0.2. Find y (1.0). Given that y(0.2) = 0.2027, y (0.4) = 0.4228, y (0.6) = 0.6841.
 - c) Solve the boundary value problem y'' 64y + 10 = 0 with boundary conditions y(0) = y(1) = 0, by using Finite-Difference method. Compute the value of y(0.5) (5+5+5)