Reg. No.

BCACAC 264

Credit Based Fourth Semester B.C.A. Degree
Examination, September 2022
(Common to all Batches)
COMPUTER ORIENTED NUMERICAL ANALYSIS (Elective - I)
Time : 3 Hours
Max. Marks : 80
Note : i) Answer any ten questions from Part - A and one full question from each Unit in Part - B.
ii) Scientific calculator is allowed.
PART - A

1. a) Define Absolute and Relative Error.
b) Define Interpolation and Extrapolation.
c) If $Y_{1}-Y_{0}=\delta Y_{1 / 2}$ then $\delta^{3} Y_{7 / 2}$.
d) Write the equation for fitting a straight line for $\partial S / \partial \mathrm{a}_{0}$ and $\partial S / \partial \mathrm{a}_{1}$.
e) Write the Simpson's $1 / 3$ rule for $\int_{x 0}^{x n} y d x$.
f) Write Newton's forward difference formula for $\left[\frac{d y}{d x}\right] x=x_{0}$ and $\left[\frac{d^{2} y}{d x^{2}}\right] x=x_{0}$.
g) Define upper triangular. Give example.
h) Given the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]$ find $\|A\|_{2}$.
i) Show that $A=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is Orthogonal.
j) Write Runge-Kutta $4^{\text {th }}$ order formula.
k) Write Milne's Predictor formula.
I) Define square matrix. Give example.
```
PART - B
Unit - I
```

2. a) Find the real root of the following equation: $f(x)=x^{3}-2 x-5=0$ using Bisection method.
b) In the table below the values of y are consecutive terms of a series of which the number 21.6 is the $6^{\text {th }}$ term. Find the first term of the series using Newton's forward difference interpolation formula.

\mathbf{X}	3	4	5	6	7	8	9
\mathbf{Y}	2.7	6.4	12.5	21.6	34.3	51.2	72.9

c) Find the $7^{\text {th }}$ term of the series $3,9,20,38,65$ using Lagrange Interpolation formula.
3. a) Use the method of Iteration to find a positive root, between 0 and 1 of the equation $\mathrm{xe}^{\mathrm{x}}=1$.
b) Find a root of the equation $x \sin x+\cos x=0$ using Newton-Raphson method.
c) Given the set of tabulated points $(1,-3),(3,9),(4,30)$ and $(6,132)$. Obtain the value of y when $\mathrm{x}=2$ using Newton's divided difference Formula.
Unit - II
4. a) Certain experimental values of x and y are given below.

\mathbf{X}	0	2	5	7
\mathbf{Y}	-1	5	12	20

If $y=a_{0}+a_{1} x$, find approximate values of a_{0} and a_{1}.
b) Calculate the first and second derivatives of the function tabulated below at the point $\mathrm{x}=2.2$ using Newton's backward difference formula.

\mathbf{X}	1.0	1.2	1.4	1.6	1.8	2.0	2.2
\mathbf{Y}	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

c) Evaluate $\mathrm{I}=\int_{0}^{1} 1 /(1+\mathrm{x}) \mathrm{dx}$ by trapezoidal rule when $\mathrm{h}=0.25$, correct to three decimal places.
5. a) Determine the constants a and b by the method of least squares such that $y=a e^{b x}$, fit the following the data.

\mathbf{x}	2	4	6	8	10
\mathbf{y}	4.077	11.084	30.128	81.897	222.62

b) From the following table of values of x and y, obtain $d\left(\mathrm{~J}_{0}\right) / \mathrm{dx}$ and at $\mathrm{x}=0.1$ using Newton's forward difference formula.

\mathbf{X}	0.0	0.1	0.2	0.3	0.4
$\mathbf{J}_{\mathbf{0}} \mathbf{(x)}$	1.0000	0.9975	0.9900	0.9776	0.9604

c) Evaluate $\mathrm{I}=\int_{1}^{3} \frac{1}{\mathrm{x}} \mathrm{dx}$ by Simpson's $1 / 3$ rule with 4 strips.
Unit - III
6. a) Express the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 7 & 8 \\ 6 & 2 & 9 \\ 5 & 4 & 3\end{array}\right]$ as a sum of symmetric and a skew-symmetric
matrix.
b) Solve the following system using Jacobi's method. Carry out 3 iterations.
$10 x+2 y+z=9$
$2 x+20 y-2 z=-44$
$-2 x+3 y+10 z=22$
c) Solve the following system using Gauss Elimination method.
$2 x+y+z=10$
$3 x+2 y+3 z=18$
$x+4 y+9 z=16$
7. a) Solve the following equations using matrix inversion method.
$3 x+y+2 z=3$
$2 x-3 y-z=-3$
$x+2 y+z=4$
b) Solve the following system using Gauss-Jordan method.
$5 x-2 y+z=4$
$7 x+y-5 z=8$
$3 x+7 y+4 z=10$
c) Solve the following system using Gauss-Seidal method. Carry out 3 iterations.
$10 x+2 y+z=9$
$2 x+20 y-2 z=-44$
$-2 x+3 y+10 z=22$

Unit - IV

8. a) Given $(d y / d x)-1=x y$ and $y(0)=1$, obtain the Taylor's series for $y(x)$ and compute $y(0.1)$, correct to four decimal places.
b) Using Euler's method solve the differential equation $(d y / d x)+2 y=0$, where $h=0.1$ and obtain $y(0.1), y(0.2)$.
c) Given $(d y / d x)=y-x$ where $y(0)=2, x o=0$ and $h=0.1$. Find $y(0.1)$ using Runge-Kutta fourth order formula.
9. a) Using Adams-Moulton formula, solve $y^{\prime}=1+y^{2}$ where $y=0$ when $\mathrm{x}=0$, and $\mathrm{h}=0.1$. Find $\mathrm{y}(0.8)$. Given that $\mathrm{y}(0.1)=0.0052, \mathrm{y}(0.2)=0.0214$, $y(0.3)=0.0499$.
b) Using Milne's formula solve $\mathrm{y}^{\prime}=1+\mathrm{y}^{2}$ where $\mathrm{y}(0)=0$, and $\mathrm{h}=0.2$. Find $y(1.0)$. Given that $\mathrm{y}(0.2)=0.2027, \mathrm{y}(0.4)=0.4228, \mathrm{y}(0.6)=0.6841$.
c) Solve the boundary value problem $y^{\prime \prime}-64 y+10=0$ with boundary conditions $y(0)=y(1)=0$, by using Finite-Difference method. Compute the value of $\mathrm{y}(0.5)$
