Reg. No.

Second Semester B.C.A. Degree Examination, September 2022 (NEP - 2020) (2021 - 22 Batch Onwards) DATA STRUCTURE USING C (DSCC)

Time: 2 Hours

Note: Answer **any six** questions from Part – **A** and **one full** question from each Unit in Part – B.

PART - A

- 1. a) Define linear data structure and non linear data structure.
 - b) What is sparse matrix ? Give example.
 - c) What is a Circular Linked List ? Give diagrammatic representation of a circular linked list.
 - d) Differentiate linear search and binary search.
 - e) Define Dequeue. What are its types?
 - f) Write prefix and postfix of :

 $(X + Y/Z * W ^ P).$

- g) What is binary search tree? Give an example.
- h) Define the following :
 - i) Leaf node
 - ii) Directed graph.

PART – B Unit – I

- 2. a) Given a two dimensional array A[10] [20], base address of A being 1000 and width of each element is 4 bytes, find the location of A[8] [10] when the array is stored in (i) row wise (ii) column wise.
 - b) List the properties of recursive function. Write a recursive algorithm to find the factorial of a number.
 - c) Write bubble sort algorithm. Explain with an example. (4+4+4)

P.T.O.

BCACACN 202

 $(2 \times 6 = 12)$

Max. Marks: 60

BCACACN 202

-2-

- 3. a) Explain the memory representation of one dimensional array.
 - b) Explain algorithmic notations for selection control structure.
 - c) Trace the following numbers using insertion sort : 70, 11, 33, 77, 88, 22.

Unit – II

- 4. a) Write and explain an algorithm to search for an element in a given list of N numbers using linear search method.
 - b) Explain with a neat diagram to delete a node following a given node in a singly linked list.
 - c) Explain memory representation of linked list in memory with a neat diagram. (4+4+4)
- 5. a) Write a note on singly linked list.
 - b) Write binary search algorithm to search for an element in a given list of N numbers.
 - c) Write an algorithm to insert a node at the beginning of a singly linked list.

(4+4+4)

(4+4+4)

Unit – III

- 6. a) What is a Queue ? Write algorithms to insert and delete an item into/from a linear queue.
 - b) Evaluate the following postfix expression using STACK :

3, 1, +, 2, [^], 7, 4, -, 2, ^{*}, +, 5. - (6+6)

- 7. a) What is a Stack ? Write algorithms to implement STACK operations using array.
 - b) Write and explain an algorithm to convert given infix expression to postfix expression using STACK with an example. (6+6)

-3-

Unit – IV

- 8. a) Write recursive algorithms to perform preorder and postorder traversal of a binary tree.
 - b) Given the following traversals of a binary tree, write the corresponding binary search tree. Also write post order traversal.

PRE ORDER : A B C D E F G H I

IN ORDER : D C E B A F H I G

- c) Write an algorithm for breadth first search for a graph. (4+4+4)
- 9. a) Draw a binary search tree for the following list of numbers and traverse it in Preorder, Inorder and Postorder :

40, 50, 33, 99, 22, 77, 60, 11, 55

- b) What is adjacency matrix and path matrix ? Give an example for each.
- c) Write an algorithm for a depth first search for a graph. (5+3+4)