Reg. No.

Second Semester B.Sc. Degree Examination, September 2022 (NEP 2020) (2021 – 22 Batch Onwards) CHEMISTRY (DSCC) Inorganic and Physical Chemistry – I (DSC-2)

Time : 2 Hours

Instructions : 1) A single booklet containing 40 pages will be issued. No additional sheets will be issued.

PART - A

- 2) Write the question number and sub-divisions clearly.
- 3) Write equations and diagrams wherever necessary.
- 4) Answer Part A in first two pages of the answer book.
- 5) Scientific calculators are allowed.

Answer **any six** of the following.

- 1. a) Define orthogonality.
 - b) State Pauli's exclusion principle.
 - c) Define Modern Periodic law.
 - d) Why HCIO₃ is stronger acid than HCIO ?
 - e) What is critical phenomenon ?
 - f) Define parachor.
 - g) State Nernst distribution law.
 - h) Define the law of rationality of indices.

BSCCHCN 201

Max. Marks: 60

(6×2=12)

BSCCHCN 201

-2-

PART – B

Answer **any four** questions, selecting **one** question from **each** Unit. **Each** question carries **12** marks. (4×12=48)

Unit – I

2.	a)	Calculate effective nuclear charge felt by the last d electron of Mn (At.No. 25).	3			
	b)	Explain the normalization and orthogonality of a wave function.	4			
	c)	Explain Bohr's theory of atom.	5			
3.	a)	Derive de Broglie equation.	3			
	b)	Discuss the radial distribution function for 1s and 2s orbitals.	4			
	c)	Discuss Aufbau principle and give its limitations.	5			
Unit – II						
4.	a)	Explain the structure of P_4O_6 .	3			
	b)	Discuss any two factors responsible for variation of electronegativity.	4			
	c)	Explain the structure and bonding in diborane.	5			
5.	a)	Discuss Mulliken-Jaffe's electronegativity scale.	3			
	b)	Explain the preparation and structure of aluminium carbide.	4			
	c)	What do you mean by Ionisation enthalpy ? How does it change down the group and across the period ?	5			
Unit – III						
6.	a)	Calculate RMS, average and most probable velocities of carbon dioxide at				
		25°C.	3			
	b)	Give an account of Maxwell's distribution of molecular velocities of gases.	4			
	c)	Explain the method of determination of surface tension of a liquid.	5			
7.	a)	Describe the effect of temperature and solute on surface tension.	3			
	b)	Describe working of Abbe's refractometer.	4			
	c)	Derive expression for critical constants of a gas using van der Waal's equation of state.	5			

Unit – IV

-3-

8.	a)	Discuss the applications of liquid crystals.	3
	b)	Discuss the modification in Nernst distribution law when association of solute occurs in one of the solvents.	4
	c)	Derive Bragg's equation $n\lambda = 2d \sin\theta$ for a crystalline solid.	5
9.	a)	Write the differences between solid, liquid crystal and liquid.	3
	b)	Derive Nernst distribution law thermodynamically.	4
	c)	What are Miller indices ? Explain the procedure for determining the Miller indices for a plane.	5