Reg. No. \square

Credit Based II Semester B.Sc. Degree Examination, September 2022 (2018-19 \& Earlier Batches) MATHEMATICS
Calculus, Group Theory and Differential Equations
Time : 3 Hours
Max. Marks : 120
Instructions : 1) Answer any ten questions from Part A. Each question carries 3 marks.
2) Answers to Part \boldsymbol{A} should be written in the first few pages of the answer book before answers to Part B.
3) Answer five full questions from Part B choosing one full question from each Unit.
4) Scientific calculators are allowed.

> PART - A

Answer any ten questions :

1. Find a value of c, satisfying mean value theorem for the function, $f(x)=x^{2}+2 x-1$ in $[0,1]$.
2. Find $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^{3}}$.
3. Convert $(x-2)^{2}+y^{2}=4$ to polar form.
4. Find the volume of the solid generated by revolving the region between Y axis and the curve $x=2 \sqrt{y}$ about Y axis where $0 \leq y \leq 4$.
5. Find the volume of the solid generated by revolving the region bounded by $y=x, y=1$ and $x=0$ about the x-axis by Washer method.
6. Find the length of the curve $y=x^{3 / 2}, 0 \leq x \leq 1$.
7. If G is a group and $a \in G, b \in G$ then prove that
i) $\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{a}$
ii) $(a b)^{-1}=b^{-1} a^{-1}$.
8. If H and K are subgroups of a group G prove that $\mathrm{H} \cap \mathrm{K}$ is also a subroup of G .
9. Write the permutation
$\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 6 & 1 & 5 & 7 & 2 & 4 & 3\end{array}\right)$
as a product of transpositions.
10. Solve $\frac{d y}{d x}=x y^{2}$.
11. Check the exactness of the differential equation
$\left(2 x y-3 x^{2}\right) d x+\left(x^{2}+y\right) d y=0$.
12. Find the integrating factor of $\left(y-\cos ^{2} x\right) d x+\cos x d y=0$.
13. Find the orthogonal trajectories of the family of curves $x^{2}+y^{2}=c$.
14. Solve $x^{2} p^{2}-y^{2}=0$.
15. Solve $y=p x+p^{3}$.

$$
\begin{gathered}
\text { PART - B } \\
\text { Unit - I }
\end{gathered}
$$

1. a) State and prove Cauchy mean value theorem.
b) Evaluate :
i) $\lim _{x \rightarrow 0}\left(\frac{1}{\sin x}-\frac{1}{x}\right)$
ii) $\lim _{x \rightarrow 0} \frac{x(\cos x-1)}{\sin x-x}$.
c) Find the area of the region in polar co-ordinates shared by polar curve $r=2(1-\cos \theta)$ and the circle $r=2$.
2. a) State and prove Rolle's theorem.
b) Draw the graph of $r=1-\sin \theta$.
c) Find the length of the cardioid $r=a(1+\cos \theta)$.
Unit - II
3. a) Find the volume of the solid generated by revolving the region bounded by the parabola $x=y^{2}+1$ and the line $x=3$ about the line $x=3$ by Disk method.
b) Find the volume of the solid generated by revolving the triangular region formed by the vertices $(1,1)(1,2)(2,2)$ about Y axis by Shell method.
c) If a curve C is defined parametrically by $x=f(t), y=g(t)$, $a \leq t \leq b$ where f^{\prime} and g^{\prime} are continuous but not simultaneously zero on [a, b] and c is traversed exactly once as t increases from a to b then derive the formula for the length of C in the form $L=\int_{a}^{b} \sqrt{\left(\mathrm{f}^{\prime}(\mathrm{t})\right)^{2}+\left(\mathrm{g}^{\prime}(\mathrm{t})\right)^{2}}$. dt.
4. a) The region bounded by the curve $y=x^{2}+1$ and the line $y=-x+3$ is revolved about x-axis to generate a solid. Find the volume of the solid generated by Washer's method.
b) Find the volume of the solid generated by revolving the region bounded by $x=y-y^{3}$ and the y-axis about the x-axis using Shell method.
c) Find the length of the astroid, $y=\sin ^{3} t, x=\cos ^{3} t, 0 \leq t \leq 2 \pi$.

Unit - III

5. a) Prove that a non empty subset H of a group G is a subgroup iff whenever $a \in H, b \in H, a b^{-1} \in H$.

b) Let H and K be subgroups of a group G . Prove that HK is a subgroup of G
if and only if $\mathrm{HK}=\mathrm{KH}$.
c) Prove that subgroup of a cyclic group is cyclic.
6. a) Let H and K be finite subgroups of G such that HK is also a subgroup. Then prove that $\mathrm{O}(\mathrm{HK})=\frac{\mathrm{O}(\mathrm{H}) \mathrm{O}(\mathrm{K})}{\mathrm{O}(\mathrm{H} \cap \mathrm{K})}$.
b) Prove that an infinite cyclic group has exactly 2 generators.

6
c) Express the following permutation as a product of disjoint cycles and state whether it is odd or even.

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 4 & 5 & 7 & 6 & 8 & 1
\end{array}\right)
$$

Unit - IV

7. a) Solve $x y d x+\left(x^{2}+y^{2}\right) d y=0$. 6
b) Solve $\left(1+y^{2}\right) d x+\left(x^{2} y+y\right) d y=0$. 6
c) Solve $(x+2 y-1) d x-(2 x+y-5) d y=0$. 6
8. a) Solve $y\left(x^{3}-y\right) d x-x\left(x^{3}+y\right) d y=0$. 6
b) Solve $\mathrm{dx}-(1+2 \mathrm{x}$ tany f$) \mathrm{dy}=0$. 6
c) Solve $(2 x+3 y-1) d x+(2 x+3 y+2) d y=0$
Unit - V
9. a) Find the orthogonal trajectories of the family of $r=a \cos 2 \theta$.
b) Solve $\mathrm{xp}^{2}-3 y p+9 x^{2}=0$; for $x>0$. 6
c) Solve $y^{\prime \prime}=x\left(y^{\prime}\right)^{3}$. 6
10. a) Find the general and singular solution of $2 x p^{3}-6 y p^{2}+x^{4}=0$. 6
b) Solve the equation $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}+1=0$. 6
c) A thermometer reading $75^{\circ} \mathrm{F}$ is taken out where the temperature is $20^{\circ} \mathrm{F}$. The reading is $30^{\circ} \mathrm{F}$, four minutes later. Find the thermometer reading seven minutes after the thermometer was brought outside.
