Reg. No.

Credit Based II Semester B.Sc. Degree Examination, September 2022 (2018 – 19 & Earlier Batches) MATHEMATICS

Calculus, Group Theory and Differential Equations

Time: 3 Hours

Instructions : 1) Answer any ten questions from Part A. Each question carries 3 marks.

- 2) Answers to Part A should be written in the first few pages of the answer book before answers to Part **B**.
- 3) Answer five full questions from Part B choosing one full question from each Unit.
- 4) Scientific calculators are **allowed**.

PART - A

Answer any ten questions :

- 1. Find a value of c, satisfying mean value theorem for the function, $f(x) = x^2 + 2x - 1$ in [0, 1].
- 2. Find $\lim_{x \to 0} \frac{x \sin x}{x^3}$.
- 3. Convert $(x 2)^2 + y^2 = 4$ to polar form.
- Find the volume of the solid generated by revolving the region between Y axis and the curve $x = 2\sqrt{y}$ about Y axis where $0 \le y \le 4$.
- 5. Find the volume of the solid generated by revolving the region bounded by y = x, y = 1 and x = 0 about the x-axis by Washer method.
- 6. Find the length of the curve $y = x^{\frac{3}{2}}$, $0 \le x \le 1$.
- 7. If G is a group and $a \in G$, $b \in G$ then prove that ii) $(ab)^{-1} = b^{-1}a^{-1}$. i) $(a^{-1})^{-1} = a$
- 8. If H and K are subgroups of a group G prove that $H \cap K$ is also a subroup of G.

Max. Marks: 120

 $(10 \times 3 = 30)$

BSCMTC 153

BSCMTC 153

- 9. Write the permutation
 - $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 6 & 1 & 5 & 7 & 2 & 4 & 3 \end{pmatrix}$

as a product of transpositions.

- 10. Solve $\frac{dy}{dx} = xy^2$.
- 11. Check the exactness of the differential equation $(2xy - 3x^2)dx + (x^2 + y)dy = 0.$
- 12. Find the integrating factor of $(y \cos^2 x)dx + \cos x dy = 0$.
- 13. Find the orthogonal trajectories of the family of curves $x^2 + y^2 = c$.
- 14. Solve $x^2p^2 y^2 = 0$.
- 15. Solve $y = px + p^3$.

PART – B

Unit – I

a)	State and prove Cauchy mean value theorem.	6
b)	Evaluate :	
	i) $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$	
	ii) $\lim_{x \to 0} \frac{x(\cos x - 1)}{\sin x - x}.$	6
c)	Find the area of the region in polar co-ordinates shared by polar curve $r = 2(1 - \cos\theta)$ and the circle $r = 2$.	6
a)	State and prove Rolle's theorem.	6
b)	Draw the graph of $r = 1 - \sin\theta$.	6
c)	Find the length of the cardioid $r = a (1 + \cos\theta)$.	6
	 a) b) c) a) b) c) 	 a) State and prove Cauchy mean value theorem. b) Evaluate : i) lim_{x→0} (1/sinx - 1/x) ii) lim_{x→0} x(cosx - 1)/sinx - x c) Find the area of the region in polar co-ordinates shared by polar curve r = 2(1 - cosθ) and the circle r = 2. a) State and prove Rolle's theorem. b) Draw the graph of r = 1 - sinθ. c) Find the length of the cardioid r = a (1 + cosθ).

BSCMTC 153

Unit – II

3.	a)	Find the volume of the solid generated by revolving the region bounded by the parabola $x = y^2 + 1$ and the line $x = 3$ about the line $x = 3$ by Disk method.	6
	b)	Find the volume of the solid generated by revolving the triangular region formed by the vertices (1, 1) (1, 2) (2, 2) about Y axis by Shell method.	6
	c)	If a curve C is defined parametrically by $x = f(t)$, $y = g(t)$, $a \le t \le b$ where f' and g' are continuous but not simultaneously zero on [a, b] and c is traversed exactly once as t increases from a to b then derive the formula	
		for the length of C in the form $L = \int_{0}^{b} \sqrt{(f'(t))^2 + (g'(t))^2}$. dt.	6
4.	a)	The region bounded by the curve $y = x^2 + 1$ and the line $y = -x + 3$ is revolved about x-axis to generate a solid. Find the volume of the solid generated by Washer's method.	6
	b)	Find the volume of the solid generated by revolving the region bounded by $x = y - y^3$ and the y-axis about the x-axis using Shell method.	6
	c)	Find the length of the astroid, $y = sin^3 t$, $x = cos^3 t$, $0 \le t \le 2\pi$.	6
		Unit – III	
5.	a)	Prove that a non empty subset H of a group G is a subgroup iff whenever $a \in H$, $b \in H$, $ab^{-1} \in H$.	6
	b)	Let H and K be subgroups of a group G. Prove that HK is a subgroup of G if and only if $HK = KH$.	6
	c)	Prove that subgroup of a cyclic group is cyclic.	6
6.	a)	Let H and K be finite subgroups of G such that HK is also a subgroup. Then	
		prove that $O(HK) = \frac{O(H)O(K)}{O(H \cap K)}$.	6
	b)	Prove that an infinite cyclic group has exactly 2 generators.	6
	c)	Express the following permutation as a product of disjoint cycles and state whether it is odd or even.	
		$ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 7 & 6 & 8 & 1 \end{pmatrix} $	6

Unit – IV

7.	a)	Solve $xydx + (x^2 + y^2)dy = 0$.	6				
	b)	Solve $(1 + y^2)dx + (x^2y + y)dy = 0.$	6				
	c)	Solve $(x + 2y - 1)dx - (2x + y - 5)dy = 0$.	6				
8.	a)	Solve $y(x^3 - y)dx - x(x^3 + y)dy = 0$.	6				
	b)	Solve $dx - (1 + 2x \tan y)dy = 0$.	6				
	c)	Solve $(2x + 3y - 1) dx + (2x + 3y + 2)dy = 0$.	6				
Unit – V							
9.	a)	Find the orthogonal trajectories of the family of $r = a \cos 2\theta$.	6				
	b)	Solve $xp^2 - 3yp + 9x^2 = 0$; for $x > 0$.	6				
	c)	Solve $y'' = x(y')^3$.	6				
10.	a)	Find the general and singular solution of $2xp^3 - 6yp^2 + x^4 = 0$.	6				
	b)	Solve the equation $yy'' + (y')^2 + 1 = 0$.	6				
	c)	A thermometer reading 75°F is taken out where the temperature is 20°F. The reading is 30°F, four minutes later. Find the thermometer reading seven minutes after the thermometer was brought outside.	6				