BSCMTC 253

Credit Based IV Semester B.Sc. Degree Examination, September 2022 (2019 – 20 and Earlier Batches) MATHEMATICS

Multiple Integrals, Infinite Sequences and Series and Complex Analysis

Time : 3 Hours

Answer anv ten questions :

Max. Marks : 120

 $(10 \times 3 = 30)$

Instructions : 1) Answer any ten questions from Part – A. Each question carries 3 marks.

- 2) Answer to Part **A** should be written in the **first** few pages of the answer book before answers to Part **B**.
- *3)* Answer **five full** questions from Part **B** choosing **one full** question from **each** Unit.
- 4) Scientific calculators are **allowed**.

1. a) Evaluate
$$\int_{0}^{\pi} \int_{0}^{x} x \sin y \, dy \, dx$$
.
b) Write an equivalent double integral with order reversed for $\int_{0}^{1} \int_{y}^{\sqrt{y}} dx \, dy$.
c) Find the average value of $f(x, y) = x \cos xy$ over the rectangle $R : 0 \le x \le \pi$,
 $0 \le y \le 1$.
d) Find the singular points of $f(z) = \frac{z^3 + 7}{(z^3 - 2z + 2)(z - 3)}$.
e) Show that $\sin(i\overline{z}) = \overline{\sin(iz)}$ if and only if $z = in\pi$, $n \in I$.
f) Find the domain and range of $f(z) = \frac{iz}{z - \overline{z}}$.
g) Prove that $f(z) = e^{\overline{z}}$ is an entire function.
h) Prove that $|\sinh z|^2 = \sinh^2 x + \sin^2 y$.
i) Find the zeros of $\sin(iz)$.
P.T.O.

BSCMTC 253

j) Find the sum of the series $\sum_{n=0}^{\infty} \left(\frac{1}{\sqrt{2}}\right)^n$. 3 k) Find $\lim_{n \to \infty} \frac{5^n}{7^n}$. 3 I) Find the Taylor polynomial of order two generated by $f(x) = \frac{1}{x}$ at a = 2. 3 m) If $\sum_{n=1}^{\infty} |a_n|$ converges, then prove that $\sum_{n=1}^{\infty} a_n$ converges. 3 n) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n!3^n}$. 3 3 o) State the limit comparison test. PART – B Unit – I $(6 \times 3 = 18)$ 6 2. a) Evaluate : i) $\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\pi} y \sin z dx dy dz$ ii) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} (x^{2} + y^{2} + z^{2}) dz dy dx$. b) Find the area bounded by the Cardioid $r = a(1 + \cos\theta)$. 6 c) Change the Cartesian integral $\int_{0}^{6} \int_{0}^{y} x dx dy$ into an equivalent polar integral and then evaluate it. 6 3. a) Evaluate $\iint_{v} f(u, v) dv du$ where $f(u, v) = v - \sqrt{u}$ over the triangular region cut from the first quadrant in the uv plane by the line u + v = 1. 6 b) Find the volume of the solid that is bounded above by the cylinder $z = x^2$ and below the region enclosed by the parabola $y = 2 - x^2$ and the line y = xin the xy-plane. 6 c) Integrate $f(x, y) = \frac{\ln(x^2 + y^2)}{\sqrt{x^2 + y^2}}$ over the region $1 \le x^2 + y^2 \le e$, by converting it

into a polar integral.

6

BSCMTC 253

6

6

6

6

4. a) Find all the roots of
$$(-8 - i 8\sqrt{3})^{\frac{1}{4}}$$
 and represent them geometrically.

- b) Let the function f(z) = u(x, y) + iv(x, y) be defined in some neighbourhood of z = a + ib. If the first order partial derivatives of u and v are continuous at (a, b) and if they satisfy Cauchy-Riemann equations $u_x = v_y$ and $u_y = -v_x$, then prove that f'(z) exists at a + ib.
- c) Show that $f(x + iy) = e^{y} \cos x + 2ie^{y} \sin x$ is not analytic anywhere.

5. a) Let f(z) = u(x, y) + iv(x, y), $z_0 = x_0 + iy_0$ and $w_0 = p + iq$, then prove that $\lim_{z \to z_0} f(z) = w_0 \Leftrightarrow \lim_{(x, y) \to (x_0, y_0)} u(x, y) = p \text{ and } \lim_{(x, y) \to (x_0, y_0)} v(x, y) = q \cdot$ 6

- b) If z_1 and z_2 are any two complex numbers, then prove that $\arg(z_1 \ z_2) = \arg(z_1) + \arg(z_2).$ 6
- c) Using the definition of limit, show that $\lim_{z \to z_0} (az^2 + bz + c) = az_0^2 + bz_0 + c$. 6

6. a) Show that the function $u(x, y) = -x^3 + 3xy^2 + 2y + 1$ is harmonic and construct the corresponding analytic function. 6 b) Show that $|\sinh z|^2 = \sinh^2 x + \sin^2 y$. 6 c) Find the primitive period and zeros of $\sinh(iz + 2)$. 6 7. a) Find the general values of 6 i) log i ii) log e.

- b) Evaluate $\int_{a}^{b} f(z)dz$ where γ is the arc from z = -1 i to z = 1 + i, consisting of a line segment from (-1, -1) to (0, 0) and portion of the curve $y = x^3$. 6
- c) Prove that the function f(z) = u + iv is analytic in D if and only if u and v are harmonic conjugates of each other.

-3-

BSCMTC 253

Unit – IV

(6×3=18)

8. a) Using partial fractions, find the sum of the series $\sum_{n=1}^{\infty} \frac{4}{(4n-3)(4n+1)}$. 6 b) Test the convergence of the sequence whose nth term is 6

i)
$$a_n = \frac{\log n}{n}$$
 ii) $a_n = \frac{n}{2^n}$.
c) Discuss the convergence of $a_n = \left(\frac{n+1}{n-1}\right)^n$. 6

9. a) Find the Maclaurin series for the function $f(x) = \frac{1}{1 + v}$. 6

- b) Express the numbers 1.414414414... as the ratio of two integers. 6
- c) Find whether the following series converge. If so find their sum. 6

i)
$$\sum_{n=0}^{\infty} \left(\frac{5}{2^n} + \frac{1}{3^n} \right)$$
 ii)
$$\sum_{n=0}^{\infty} \ln \left(\frac{n}{n+1} \right).$$

Unit – V (6×3=

i)
$$\sum_{n=1}^{\infty} n! e^{-n}$$
 ii) $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$.

c) Discuss whether the series given below converge absolutely or converge conditionally or diverge.

i)
$$\sum_{n=1}^{\infty} (-1)^{n+1} (0.1)^n$$
 ii) $\sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}}$

- 11. a) State and prove ratio test for series.
 - b) Test the convergence of the infinite series :

i)
$$\sum_{n=1}^{\infty} \left(\frac{n}{3n+1}\right)^n$$
 ii) $\sum_{n=1}^{\infty} \frac{3^n+1}{5^n}$.

c) Prove that the series $\sum_{n=1}^{\infty} (-1)^{n+1}u_n = u_1 - u_2 + u_3 - u_4 + u_5 + \dots$ converges if

all three of the following are satisfied.

- i) The u_n's are all positive.
- ii) $u_n \ge u_{n+1}$ for all $n \ge N$, for some positive integer N.

iii)
$$u_n \rightarrow 0$$
.

6

6

6

6