Reg. No. $\square$
BSCMTC 253

## Credit Based IV Semester B.Sc. Degree Examination, September 2022 (2019-20 and Earlier Batches) MATHEMATICS <br> Multiple Integrals, Infinite Sequences and Series and Complex Analysis

Time : 3 Hours
Max. Marks : 120

## Instructions : 1) Answer any ten questions from Part - A. Each question carries 3 marks. <br> 2) Answer to Part - A should be written in the first few pages of the answer book before answers to Part - B. <br> 3) Answer five full questions from Part - B choosing one full question from each Unit. <br> 4) Scientific calculators are allowed.

PART - A
Answer any ten questions :

1. a) Evaluate $\int_{0}^{\pi} \int_{0}^{x} x \sin y d y d x$.
b) Write an equivalent double integral with order reversed for $\int_{0}^{1} \int_{y}^{\sqrt{y}} d x d y$.
c) Find the average value of $f(x, y)=x \cos x y$ over the rectangle $R$ : $0 \leq x \leq \pi$, $0 \leq y \leq 1$.
d) Find the singular points of $f(z)=\frac{z^{3}+7}{\left(z^{3}-2 z+2\right)(z-3)}$.
e) Show that $\sin (\overline{\mathrm{iz}})=\overline{\sin (i z)}$ if and only if $z=i n \pi, n \in I$.
f) Find the domain and range of $f(z)=\frac{i z}{z-\bar{z}}$.
g) Prove that $f(z)=e^{z}$ is an entire function.
h) Prove that $|\sinh z|^{2}=\sinh ^{2} x+\sin ^{2} y$.
i) Find the zeros of $\sin (i z)$.
j) Find the sum of the series $\sum_{n=0}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}$.
k) Find $\lim _{n \rightarrow \infty} \frac{5^{n}}{7^{n}}$.
I) Find the Taylor polynomial of order two generated by $f(x)=\frac{1}{x}$ at $a=2$.
m) If $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges, then prove that $\sum_{n=1}^{\infty} a_{n}$ converges.
n) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n!3^{n}}$.
o) State the limit comparison test.

$$
\begin{gather*}
\text { PART - B } \\
\text { Unit - I }
\end{gather*}
$$

2. a) Evaluate :
i) $\int_{0}^{1} \int_{0}^{\pi} \int_{0}^{\pi} y \sin z d x d y d z$
ii) $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1}\left(x^{2}+y^{2}+z^{2}\right) d z d y d x$.
b) Find the area bounded by the Cardioid $r=a(1+\cos \theta)$.
c) Change the Cartesian integral $\int_{0}^{6} \int_{0}^{y} x d x d y$ into an equivalent polar integral
and then evaluate it.
3. a) Evaluate $\iint_{R} f(u, v) d v d u$ where $f(u, v)=v-\sqrt{u}$ over the triangular region cut from the first quadrant in the uv plane by the line $u+v=1$.
b) Find the volume of the solid that is bounded above by the cylinder $z=x^{2}$ and below the region enclosed by the parabola $y=2-x^{2}$ and the line $y=x$ in the xy-plane.
c) Integrate $f(x, y)=\frac{\ln \left(x^{2}+y^{2}\right)}{\sqrt{x^{2}+y^{2}}}$ over the region $1 \leq x^{2}+y^{2} \leq e$, by converting it into a polar integral.
Unit - II
4. a) Find all the roots of $(-8-i 8 \sqrt{3})^{1 / 4}$ and represent them geometrically.
b) Let the function $f(z)=u(x, y)+i v(x, y)$ be defined in some neighbourhood of $z=a+i b$. If the first order partial derivatives of $u$ and $v$ are continuous at ( $a, b$ ) and if they satisfy Cauchy-Riemann equations $u_{x}=v_{y}$ and $u_{y}=-v_{x}$, then prove that $f^{\prime}(z)$ exists at $a+i b$.
c) Show that $f(x+i y)=e^{y} \cos x+2 i e^{y} \sin x$ is not analytic anywhere.
5. a) Let $f(z)=u(x, y)+i v(x, y), z_{0}=x_{0}+i y_{0}$ and $w_{0}=p+i q$, then prove that

$$
\lim _{z \rightarrow z_{0}} f(z)=w_{0} \Leftrightarrow \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} u(x, y)=p \text { and } \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} v(x, y)=q \text {. }
$$

b) If $z_{1}$ and $z_{2}$ are any two complex numbers, then prove that $\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$.
c) Using the definition of limit, show that $\lim _{z \rightarrow z_{0}}\left(a z^{2}+b z+c\right)=a z_{0}^{2}+b z_{0}+c$.
Unit - III
6. a) Show that the function $u(x, y)=-x^{3}+3 x y^{2}+2 y+1$ is harmonic and construct the corresponding analytic function.
b) Show that $|\sinh z|^{2}=\sinh ^{2} x+\sin ^{2} y$.
c) Find the primitive period and zeros of $\sinh (i z+2)$.
7. a) Find the general values of
i) $\log i$
ii) $\log \mathrm{e}$.
b) Evaluate $\int_{\gamma} f(z) d z$ where $\gamma$ is the arc from $z=-1-i$ to $z=1+i$, consisting of a line segment from $(-1,-1)$ to $(0,0)$ and portion of the curve $y=x^{3}$.
c) Prove that the function $f(z)=u+i v$ is analytic in $D$ if and only if $u$ and $v$ are harmonic conjugates of each other.
Unit - IV
8. a) Using partial fractions, find the sum of the series $\sum_{n=1}^{\infty} \frac{4}{(4 n-3)(4 n+1)}$.
b) Test the convergence of the sequence whose $\mathrm{n}^{\text {th }}$ term is
i) $a_{n}=\frac{\log n}{n}$
ii) $a_{n}=\frac{n}{2^{n}}$.
c) Discuss the convergence of $a_{n}=\left(\frac{n+1}{n-1}\right)^{n}$.
9. a) Find the Maclaurin series for the function $f(x)=\frac{1}{1+x}$.
b) Express the numbers $1.414414414 \ldots$ as the ratio of two integers.
c) Find whether the following series converge. If so find their sum.
i) $\sum_{n=0}^{\infty}\left(\frac{5}{2^{n}}+\frac{1}{3^{n}}\right)$
ii) $\sum_{n=0}^{\infty} \ln \left(\frac{n}{n+1}\right)$.
Unit - V
( $6 \times 3=18$ )
10. a) State and prove the integral test for convergence of series.
b) Test the convergence of the series:
i) $\sum_{n=1}^{\infty} n!e^{-n}$
ii) $\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}$.
c) Discuss whether the series given below converge absolutely or converge conditionally or diverge.
i) $\sum_{n=1}^{\infty}(-1)^{n+1}(0.1)^{n}$
ii) $\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{\sqrt{n}}$.
11. a) State and prove ratio test for series.
b) Test the convergence of the infinite series:
i) $\sum_{n=1}^{\infty}\left(\frac{n}{3 n+1}\right)^{n}$
ii) $\sum_{n=1}^{\infty} \frac{3^{n}+1}{5^{n}}$.
c) Prove that the series $\sum_{n=1}^{\infty}(-1)^{n+1} u_{n}=u_{1}-u_{2}+u_{3}-u_{4}+u_{5}+\ldots$ converges if all three of the following are satisfied.
i) The $u_{n}$ 's are all positive.
ii) $u_{n} \geq u_{n+1}$ for all $n \geq N$, for some positive integer $N$.
iii) $u_{n} \rightarrow 0$.

