P.T.O.

Reg. No.

BSCMTC 358

Credit Based VI Semester B.Sc. Degree Examination, September 2022 (2020-21 and Earlier Batches) MATHEMATICS

Partial Differential Equations, Fourier Series and Linear Algebra

Time: 3 Hours

Instructions: 1) Answer any ten questions from Part – A. Each question carries 3 marks.

- 2) Answers to Part A should be written in the first few pages of the answerbook before answers to Part - B.
- 3) Answer five full questions from Part B choosing one full question from each Unit.
- 4) Scientific calculators are allowed.

Answer any ten questions :

- 1. Verify the integrability condition for $(y^2 + yz) dx + (xz + z^2) dy + (y^2 xy) dz = 0$.
- 2. Eliminate 'a' and 'b' from $\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} = 1$.
- 3. Find the complete integral of $p^2 + q^2 = 4$.
- 4. State the Dirichlet's conditions for Fourier series expansion of a function.
- 5. If $f(x) = \begin{cases} 1, & 0 < x < 1 \\ -1, & 1 < x < 2 \end{cases}$, find the Fourier coefficient a_0 .
- 6. Write the complex form of the Fourier series of a function and the formula for the complex Fourier coefficient.
- 7. Determine whether the vectors $V_1 = (1, 0, 2)$, $V_2 = (1, 1, 1)$ and $V_3 = (4, 5, 3)$ of R³ are linearly independent.
- 8. If V is a vector space over F, then prove that $a.v = 0 \Rightarrow$ either a = 0 or v = 0where $a \in F$ and $v \in V$.

 $(10 \times 3 = 30)$

Max. Marks: 120

BSCMTC 358

- 9. In an inner product space V = R, if v is orthogonal to v' then prove that $||v + v'||^2 = ||v||^2 + ||v'||^2$ where v, $v' \in V$.
- 10. If A is a nilpotent matrix, then prove that I + A is non-singular.
- 11. Let T : V \rightarrow V' be a linear transformation. If V₁, V₂,..., V_n are elements of V such that T(V₁), ..., T(V_n) are linearly independent. Show that V₁, V₂,..., V_n are linearly independent.
- 12. Let T : $R^3 \rightarrow R^3$ be defined by T(x, y, z) = (x, 2y, x + y + z). Find the dimension of T(V).

13. Find the rank of the matrix $\begin{pmatrix} 2 & 3 & -1 \\ -1 & 0 & 4 \\ 4 & 5 & 8 \end{pmatrix}$ using elementary row operations.

- 14. Find the characteristic roots of $A = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$.
- 15. Prove that every non singular matrix is a product of elementary matrices.

1.	a) Eliminate the arbitrary function 'f ' from $f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$.	6
	b) Solve $(y + z) p + (z + x)q = x + y$ by Lagrange's method.	6
	c) Solve : $p(1 + q) = qz$.	6
2.	a) Assuming integrability condition, solve $(yz + z^2)dx - xzdy + xydz = 0$.	6
	 b) Obtain the partial differential equation of all spheres whose centres lie on the z-axis. 	6
	c) Solve $p^2 + q^2 = x + y$.	6

Unit – II

3. a) Find the Fourier expansion of the periodic function whose definition in one period is $f(x) = \begin{cases} 0 & -\pi \le x \le 0 \\ \sin x & 0 \le x \le \pi \end{cases}$. 9

b) Find the half range sine and cosine expansions of the function f(x) = x, 0 < x < 2.

-3-

BSCMTC 358

9

9

6

6

6

- 4. a) Expand f(x) = x² in Fourier series over the interval (-p, p). Hence show that $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$.
 - b) Find the complex form of Fourier series of the function whose definition in one period is $f(x) = e^{-x}$, -1 < x < 1.

Unit – III

5. a) Let V be a vector space over F and let $\{W_{\alpha}\}_{\alpha\in I}$ be a collection of

subspaces of V, prove that $W = \bigcap_{\alpha \in I} w_{\alpha}$ is also a subspace of V. 6

b) Let V be a vector space of dimension n. Then prove that any set of m linearly independent elements (m ≤ n) can be completed to a basis of V.

- c) Define an inner product space. Prove that any orthonormal set in an inner product space V is linearly independent.
- 6. a) Prove that the set $\{V_1, V_2, ..., V_n\}$ is a minimal generating set for V if and only if it is a basis of V.

b) Prove that V is a direct sum of subspaces V_1 and V_2 if and only if every

$v \in V$ can be expressed uniquely as $v = v_1 + v_2$, $v_1 \in V_1$, $v_2 \in V_2$.	6
--	---

c) Let V be an inner product space, prove that $| < v, v' > | \le ||v|| ||v'||$, for all v, $v' \in V$.

Unit – IV

- 7. a) Define a linear transformation. Prove that a linear transformation $T : V \rightarrow V'$ is a one to one mapping if and only if Ker $T = \{0\}$.
 - b) Test the columns of A = $\begin{bmatrix} 1 & 0 & 3 \\ -1 & 0 & 4 \\ 3 & 2 & 0 \\ 4 & 1 & 0 \end{bmatrix}$ for linear independence and hence

find its column rank.

c) Prove that a linear transformation T is an isomorphism if and only if m(T) is a non singular matrix.

6

BSCMTC 358 -4-8. a) Let V and V' be any two vector spaces of dimension m and n respectively

over the field F. Then prove that the space L(V, V') of all linear transformations of V into V' is isomorphic onto the space M_{mn} (F) of all m×n matrices over the field F.

b) Let A = $\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & -5 \\ 0 & 0 & 1 \end{vmatrix}$ be the matrix of T \in L (R³, R³) with respect to the

standard basis. Find the matrix of T with respect to the basis $\{(1, 1, 0), (0, 1, 0), (0, 1, 1)\}.$

c) Let V be a vector space over F and let W be a subspace of V. Let $V_1, V_2, ..., V_n$ be a basis of V such that $V_1, V_2, ..., V_m$ (m \leq n) is a basis of W. Then prove that $\overline{V}_{m+1}, \overline{V}_{m+2}, ..., \overline{V}_n$ is a basis of $V/_W$. 6

Unit – V

- 9. a) Find the rank of the matrix $A = \begin{bmatrix} 6 & -2 & 18 \\ -4 & 1 & 11 \\ -5 & 2 & 16 \end{bmatrix}$ using elementary row or column operations. 6
 - b) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$. Find A^{-1} by elementary row or column operations. 6
 - c) If $A = \begin{bmatrix} 2 & 1 & -1 \\ 3 & 4 & 2 \\ 0 & 0 & 1 \end{bmatrix}$. Find the minimal polynomial of A. 6
- 10. a) Show that the system of equations $x_1 + x_2 + x_3 = 0$

$$2x_{1} + 3x_{2} + x_{3} = 0$$
$$3x_{1} + 6x_{2} + 5x_{3} = 0$$

has only a trivial solution.

- b) Define minimal polynomial of a matrix $A \in M_n$ (F). Let $A \in M_n$ (F) and let $q(x) \in F[x]$, be the minimal polynomial of A. If $f(x) \in F[x]$ is any other polynomial satisfied by A, then prove that q(x) divides f(x).
- c) Let $A \in M_n$ (F). Let $\lambda_1, \lambda_2, ..., \lambda_m \in F$ be the distinct characteristic roots of A. $V_1, V_2, ..., V_m$ are the corresponding characteristic vectors, then prove that $\boldsymbol{V}_{_1},\,\boldsymbol{V}_{_2},\!...,\!\boldsymbol{V}_{_m}$ are linearly independent over F.

6

6

6

6