Reg. No. \square

Credit Based VI Semester B.Sc. Examination, September 2022 (2020 - 21 and Earlier Batches) MATHEMATICS
 Special Paper - VIII (a) : Graph Theory

Time : 3 Hours
Max. Marks : 120
Instructions : 1) Answer any ten questions from Part - A. Each question carries 3 marks.
2) Answers to Part - A should be written in the first few pages of the answer book before answers to Part - B.
3) Answer five full questions from Part - B choosing one full question from each Unit.
4) Scientific calculators are allowed.
PART - A

1. Define (i) Euler graph (ii) Euler line.
2. If a graph has exactly two vertices of odd degree, then prove that there must be a path joining these two vertices.
3. Prove that in any tree with two or more vertices there are atleast two pendent vertices.
4. Find the center of the graph by finding eccentricity of each vertex in the following graph.

5. Define spanning tree with an example.
6. Define (i) Edge connectivity (ii) Vertex connectivity.
7. Prove that every cutset in a connected graph G must contain atleast one branch of every spanning tree of G.
8. Define separable graph with an example.
9. Write the path matrix $P\left(V_{1}, V_{4}\right)$ for the vertices V_{1} and V_{4} for the given graph.

10. Check whether the given graph is a bipartite graph.

11. Write the chromatic number for the following graphs.

12. Write the chromatic polynomial of the following graphs.

13. Prove that the number of simple labelled graphs with n vertices is $2^{\frac{n(n-1)}{2}}$.
14. Write the indegree and outdegree of each vertex in the following graph.

15. Define (i) Simple digraph (ii) Directed path (iii) Asymmetric digraph.

$$
\begin{gathered}
\text { PART - B } \\
\text { Unit - I }
\end{gathered}
$$

16. a) Prove that a connected graph G is a Euler graph iff G can be decomposed into circuits.
b) Prove that a graph G is disconnected if and only if their vertex set V can be partitioned into two disjoint subset V_{1} and V_{2} such that there is no edge in G whose one end vertex in V_{1} and another vertex in V_{2}.
c) Define degree of a vertex and regular graph. Prove that the number of vertices of odd degree in a graph is always even.
17. a) Define distance in a graph. Prove that distance between two vertices in a connected graph is a metric.
b) Prove that every tree has either one or two centres.
c) Define binary tree. Prove that the number of pendent vertices in a binary tree with n vertices is $\left(\frac{n+1}{2}\right)$.

Unit - II

18. a) Prove that every circuit has an even number of edges in common with any cutset.
b) Define a fundamental circuit and list 5 fundamentals circuits of the following graph with respect to a spanning tree $\left\{\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}\right\}$.

c) Prove that with respect to a given spanning tree T, a branch b_{i} that determines a fundamental cutset S is contained in every fundamental circuit associated with the chords in S and in no other.
19. a) Draw a geometric dual of the following graph.

b) Prove that Kuratowski's second graph $\mathrm{K}_{3,3}$ is non-planar.
c) Prove that a graph can be embedded in the surface of a sphere if and only if it can be embedded in a plane.

Unit - III

20. a) Prove that the rank of the incidence matrix of a connected graph of n vertices is $n-1$.
b) Prove that the ring sum of two circuits in a graph is either a circuit or an edge disjoint union of circuits.
c) Write the adjacency matrix of the following graph.

21. a) Prove that the rank of the cutset matrix $C(G)$ is equal to the rank of the incidence matrix $A(G)$ is equal to the rank of the graph G.
b) Let B and A be respectively the circuit matrix and the incidence matrix of a self loop free graph whose columns are arranged in the same order of edges. Then prove that $A \cdot B^{\top} \equiv 0(\bmod 2)$.
c) Write the incidence matrix of the following graph.

Unit - IV

22. a) Prove that every tree with two or more vertices is 2-chromatic.
b) Prove that a graph with atleast one edge is 2 chromatic if and only if it has no circuits of odd length.
c) Prove that the chromatic polynomial of an n vertex tree is

$$
\begin{equation*}
P_{n}(\lambda)=\lambda(\lambda-1)^{n-1} . \tag{6}
\end{equation*}
$$

23. a) Find the chromatic polynomial of the following graph :

b) Prove that a graph on n vertices is a complete graph if and only if its chromatic polynomial is $P_{n}(\lambda)=\lambda(\lambda-1) \ldots \lambda-(n-1)$.
c) Define:
i) Proper coloring of a graph
ii) Chromatic number of a graph
iii) Bipartite graph and give an example each.
Unit - V
24. a) Prove that the determinant of every square submatrix of the incidence matrix of a digraph is $-1,1$ or 0 .
b) Let A_{f} be the reduced incidence matrix of a connected digraph. Prove that the number of spanning trees in a graph equals the value of the $\operatorname{det}\left(A_{f}, A_{f}^{\top}\right) .6$
c) Prove that there are $\mathrm{n}^{\mathrm{n}-2}$ labelled trees with n vertices $\mathrm{n} \geq 2$.
25. a) Define a circuit matrix of a digraph. Write circuit matrix of the following
digraph.
i) Pendent vertex
ii) Isolated vertex
iii) Symmetric graph
iv) Balanced graph
v) Self loop
vi) Strongly connected graph.
c) Let B and A be respectively the circuit matrix and the incidence matrix of a self-loop free digraph such that columns in B and A are arranged in the same order of edges. Then prove that $A \cdot B^{\top}=B \cdot A^{\top}=0$.
