Reg. No.

Credit Based VI Semester B.Sc. Degree Examination, September 2022 **MATHEMATICS (Special Paper – 8b)** Linear Programming and its Applications (2020 – 21 and Earlier Batches)

Time : 3 Hours

Instructions : 1) Answer any ten questions from (Part – A). Each question carries 3 marks.

- 2) Answer five full questions from (Part B) choosing one full question from each Unit.
- 3) Scientific calculators are allowed.

PART - A

1. Define :

- i) A convex set in Rⁿ.
- ii) Closed ball in Rⁿ.
- 2. Convert the LPP below to the canonical form

Minimize g(x, y, z) = x - 2y - zSubject to $10x + 5y + 2z \le 1000$ $2x + 7z \le 800$

- $x, y, z \ge 0$.
- 3. Pivot on $a_{21} = 4$ in the following canonical maximization tableau.

_	X ₁	X ₂	-1	_
	1	3	2	$=-t_1$
	4	6	7	$= -t_{2}$
	8	5	6	= f

Max. Marks: 120

 $(10 \times 3 = 30)$

BSCMTC 360

BSCMTC 360

4. Write the negative transpose of the minimum tableau.

X ₁	2	3	4	100
X ₂	2	1	7	124
X ₃	1	4	5	228
-1	12	14	25	0
	= t ₁	= t ₂	= t ₃	= g

Given the LPP below, state the dual canonical minimization LPP.
 Maximize f(x, y) = 5x + 3y

Subject to $x + 2y \le 10$ $2x + y \le 15$ $x, y \ge 0.$

- 6. Write the matrix reformulation of the canonical maximization LPP.
- 7. Define complimentary slackness of dual canonical LPP.
- 8. Reduce the table of the matrix game using domination when $x \le y$.

$$\begin{bmatrix} 0 & \frac{y}{4} \\ \frac{(x-y)}{4} & 0 \end{bmatrix}$$

- 9. State Von-Neumann minimax theorem.
- 10. State the process of converting an un balanced transportation problem when supply is less than the demand.
- 11. Define a cycle in a table of transportation.

12. Find all permutation set of zeros in the following table of balanced assignment problem.

	0	0	1
	0	0	0
,	1	0	0

- 13. Define source, 1 0 0 sink and intermediate vertex in a capacitated directed network.
- 14. Prove that any flow in a capacitated directed network satisfies $\Sigma_i \phi(V_i) = 0$.
- 15. Define an α path in a capacitated directed network.

1. a) Solve the following LPP graphically.

 $\begin{array}{lll} \mbox{Minimize} & C(x,\,y) = 300x + 500y\\ \mbox{Subject to} & 20x + 40y \geq 1000\\ & 25x + 20y \geq 800\\ & x,\,y \geq 0. \end{array}$

b) Apply simplex algorithm for the following tableau.

X ₁	X ₂	-1	_
1	2	20	$= -t_1$
2	2	30	$=-t_2$
2	1	25	$=-t_3$
200	150	0] = f

- 2. a) State the complete simplex algorithm for the maximum tableau.
 - b) Solve using simplex algorithm.

X ₁	X ₂	-1	_
2	1	8	$= -t_1$
1	2	10	$= -t_{2}$
30	50	0] = f

9

9

BSCMTC 360

Unit – II

х	-2	1	-3
У	1	-2	-2
-1	1	0	0
	= t ₁	= t ₂	= g

- b) State the dual Simplex algorithm for the minimum tableau. 9
- 4. a) For any pair of feasible solutions of dual canonical LPP, prove that g f = SX' + Y' T.
 - b) Solve the following non canonical LPP.

Unit – III

- 5. a) Find the optimal strategies for the row and the column player of the matrix game with the pay off matrix $\begin{bmatrix} -3 & 4 \\ 2 & -3 \end{bmatrix}$. 9
 - b) Solve the following dual non canonical LPP.

9

9

6. a) Solve the following dual non canonical LPP.

- b) Find the Von-Neumann value of the matrix game.
 - $\begin{bmatrix} -1 & 1 & -1 & 2 \\ -1 & -1 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$

Unit – IV

-5-

7. a) State the transportation algorithm to solve a balanced transportation problem.
b) Solve the following assignment problem.
9

8	7	10
7	7	8
8	5	7

- 8. a) State the Hungerian algorithm to solve a balanced assignment problem. 9
 - b) Solve the balanced transportation problem below.

7	2	4	10
10	5	9	20
7	3	5	30
20	10	30	

9

9

Unit – V

-6-

- 9. a) State the maximal flow algorithm.
 - b) Solve the shortest path network problem below. Give the shortest path and its value.

- 10. a) State the shortest pathalgorithm 1.
 - b) Solve the maximal flow network problem and the corresponding minimal cut and cut capacity.
 9

9

9