Reg. No. \square

BSCMTC 360

Credit Based VI Semester B.Sc. Degree Examination, September 2022 MATHEMATICS (Special Paper - 8b)
 Linear Programming and its Applications
 (2020 - 21 and Earlier Batches)

Time : 3 Hours
Instructions : 1) Answer any ten questions from (Part - A). Each question carries 3 marks.
2) Answer five full questions from (Part - B) choosing one full question from each Unit.
3) Scientific calculators are allowed.

PART - A

1. Define :
i) A convex set in R^{n}.
ii) Closed ball in R^{n}.
2. Convert the LPP below to the canonical form

Minimize $\mathrm{g}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}-2 \mathrm{y}-\mathrm{z}$
Subject to $10 x+5 y+2 z \leq 1000$

$$
\begin{aligned}
& 2 x+7 z \leq 800 \\
& x, y, z \geq 0 .
\end{aligned}
$$

3. Pivot on $\mathrm{a}_{21}=4$ in the following canonical maximization tableau.

x_{1}	x_{2}	-1
1	3	2
4	6	7
8	5	6
	$=-t_{1}$	

4. Write the negative transpose of the minimum tableau.

	x_{1}	2	3	4
x_{2}	2	1	7	124
x_{3}	1	4	5	228
-1	12	14	25	0
	$=t_{1}$	$=t_{2}$	$=t_{3}$	$=g$

5. Given the LPP below, state the dual canonical minimization LPP.

Maximize $f(x, y)=5 x+3 y$
Subject to $\quad x+2 y \leq 10$
$2 x+y \leq 15$
$x, y \geq 0$.
6. Write the matrix reformulation of the canonical maximization LPP.
7. Define complimentary slackness of dual canonical LPP.
8. Reduce the table of the matrix game using domination when $x \leq y$.

$$
\left[\begin{array}{cc}
0 & \frac{y}{4} \\
\frac{(x-y)}{4} & 0
\end{array}\right]
$$

9. State Von-Neumann minimax theorem.
10. State the process of converting an un balanced transportation problem when supply is less than the demand.
11. Define a cycle in a table of transportation.
12. Find all permutation set of zeros in the following table of balanced assignment problem.
13. Define source, | 0 | 0 | 1 |
| :--- | :--- | :--- |
| 0 | 0 | 0 |
| 1 | 0 | 0 | sink and intermediate vertex in a capacitated directed network.
14. Prove that any flow in a capacitated directed network satisfies $\Sigma_{j} \phi\left(\mathrm{~V}_{\mathrm{j}}\right)=0$.
15. Define an α - path in a capacitated directed network.

$$
\begin{gathered}
\text { PART - B } \\
\text { Unit - I }
\end{gathered}
$$

1. a) Solve the following LPP graphically.

Minimize $\quad C(x, y)=300 x+500 y$
Subject to $20 x+40 y \geq 1000$
$25 x+20 y \geq 800$
$x, y \geq 0$.
b) Apply simplex algorithm for the following tableau.

x_{1}	x_{2}	-1
1	2	20
2	2	30
2	1	25
200	150	0
$=-\mathrm{t}_{1}$		
$=-\mathrm{t}_{2}$		
$=-\mathrm{t}_{3}$		

2. a) State the complete simplex algorithm for the maximum tableau.
b) Solve using simplex algorithm.

x_{1}	x_{2}	-1
2	1	8
1	2	10
30	50	0
	$=-\mathrm{t}_{1}$	
$=-\mathrm{t}_{2}$		

Unit - II
3. a) Solve the following minimization LPP using simplex algorithm.

x	-2	1	-3
y	1	-2	-2
	1	0	0
	$=\mathrm{t}_{1}$	$=\mathrm{t}_{2}$	$=\mathrm{g}$

b) State the dual Simplex algorithm for the minimum tableau.
4. a) For any pair of feasible solutions of dual canonical LPP, prove that $g-f=S X^{\prime}+Y^{\prime} T$.
b) Solve the following non canonical LPP.

x	V	z	-1
-1	1	1	6
1	1	0	1
1	2	1	0

Unit - III
5. a) Find the optimal strategies for the row and the column player of the matrix game with the pay off matrix $\left[\begin{array}{cc}-3 & 4 \\ 2 & -3\end{array}\right]$.
b) Solve the following dual non canonical LPP.

6. a) Solve the following dual non canonical LPP.

b) Find the Von-Neumann value of the matrix game.

$$
\left[\begin{array}{cccc}
-1 & 1 & -1 & 2 \\
-1 & -1 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right]
$$

Unit - IV

7. a) State the transportation algorithm to solve a balanced transportation problem.
b) Solve the following assignment problem.

8	7	10
7	7	8
8	5	7

8. a) State the Hungerian algorithm to solve a balanced assignment problem.
b) Solve the balanced transportation problem below.

7 2 4 10 5 9 7 3 5	10 20 20	10

Unit - V
9. a) State the maximal flow algorithm.
b) Solve the shortest path network problem below. Give the shortest path and its value.

10. a) State the shortest pathalgorithm 1.
b) Solve the maximal flow network problem and the corresponding minimal cut and cut capacity.

