P.T.O.

Reg. No.

Choice Based Credit System VI Semester B.Sc. Degree Examination, September 2022 MATHEMATICS Paper – VII : Numerical Analysis (2021-22 Batch Onwards)

Time: 3 Hours

Instructions : 1) Answer any ten questions from Part – A. Each question carries 2 marks.

- 2) Answers to Part **A** should be written in the **first** few pages of the answer book before answers to Part – **B**.
- Answer twelve questions from Part B. Each question carries 5 marks.
- 4) Scientific calculators are allowed.

PART - A

1. Round off the number 48.21416 to two decimal places and find absolute error.

- 2. Find the relative error of the number 8.6 if both of its digits are correct.
- 3. Find an interval in which the equation $x^3 + x^2 1 = 0$ has a real root.
- 4. What is the condition on $\Phi(x)$ in the method of iteration given by $x_{n+1} = \Phi(x_n)$?
- 5. If $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$ is a polynomial of degree n, then what is its (n + 1)th difference ?
- 6. Evaluate Δ^2 (x³) where the interval of differencing is unity.
- 7. Write Newton's backward interpolation formula.
- Construct the divided difference table for the following table.

X	-1	0	3	6
у	3	- 6	39	822

BSCMTC 381

Max. Marks: 80

BSCMTC 381

-2-

- 9. Write the formula for $\frac{dy}{dx}$ at x = x₀ constructed using Newton's forward difference formula.
- 10. A curve is given by the points x and y given below. Calculate the area bounded by the curve, x-axis and the extreme ordinates using trapezoidal rule.

X	0	0.5	1.0	1.5	2.0
У	23	19	14	11	12.5

- 11. Use Picard's method to get the first approximation for $\frac{dy}{dx} = x + y^2$ with y(0) = 1.
- 12. Using Euler's method, find an approximate value of y(0.2) given that $\frac{dy}{dx} = x + y$ with y(0) = 0 by taking h = 0.2.
- 13. Given $\frac{dy}{dx} = y x$, with y(0) = 2 find y(0.1) using R-K method of order 2 by taking h = 0.1
- 14. Write the Adam's-Moulton's corrector formula.

- 1. Find a real root of the equation $x^3 2x 5 = 0$ correct to 2 decimal places using Bisection Method.
- 2. Explain the method of false position to find a real root of the equation f(x) = 0.
- Find a real root of the equation x sinx + cosx = 0 correct to four decimal places using Newton- Raphson's method.
- 4. Find a real root of the equation $2x 3 = \cos x$ correct to three decimal places using iteration method lying in the interval $\left[\frac{3}{2}, \frac{\pi}{2}\right]$.
- 5. Solve the system 2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16, by Gauss-Jordan method.

- 6. Using Gauss Seidal iteration method solve the following system of equations 10x + 2y + z = 9; 2x + 20y 2z = -44; -2x + 3y + 10z = 22 (Carry out three iterations).
- 7. Derive Newton's forward interpolation formula.
- 8. From the following table find the number of students who obtained marks between 60 and 70.

Marks	0 - 40	40 - 60	60 - 80	80 - 100	100 – 120
No. of Students	250	120	100	70	50

- 9. Using Lagrange's formula, express the following rational function f(x) as a sum of partial fraction $f(x) = \frac{x^2 + x 3}{x^3 2x^2 x + 2}$.
- 10. Derive Newton's general interpolation formula.
- 11. Using the following table find f(x) as a polynomial in x.

x	-1	0	3	6	7
f(x)	3	-6	39	822	1611

12. From the following values of x and y find y'(1.0)

X	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

- 13. Using Newton Cote's formula derive Simpson's 3/8th rule.
- 14. A solid of revolution is formed by rotating about the axis, the area between the x axis, the line x = 0 and x = 1, and a curve through the points with the following co-ordinates.

Χ	0.00	0.25	0.50	0.75	1.00
Υ	1.0000	0.9896	0.9589	0.9089	0.8415

Estimate the volume of the solid formed, giving the answer to three decimal places using Simpson's 1/3rd rule.

BSCMTC 381

- 15. Use Taylor series method to find y(0.1) for the initial value problem $y^1 = x y^2$ subject to the condition y(0) = 1.
- 16. Using modified Euler's method, find the value of y when x = 0.1 given that $\frac{dy}{dx} = x^2 + y$ with y(0) = 1, by taking h = 0.1.
- 17. Use Runge–Kutta method of order four to find y(0.2) for $\frac{dy}{dx} = 1 + y^2$ and y(0) = 0 by taking h= 0.2.
- 18. Given $\frac{dy}{dx} = 1 + y^2$ and y(0) = 0, y(0.2) = 0.2027, y(0.4) = 0.4228, and

y(0.6) = 0.6841 compute y(0.8) using predictor-corrector method.