Reg. No.

Choice Based Credit System VI Semester B.Sc. Degree Examination, September 2022 (CBCS) (2021-22 Batch Onwards) MATHEMATICS Linear Algebra – VIII (a)

Time : 3 Hours

Max. Marks : 80

 $(10 \times 2 = 20)$

Instructions : 1) Answer any ten questions from Part – A. Each question carries 2 marks.

- 2) Answers to Part **A** should be written in the **first few** pages of the answer book **before** answers to Part **B**.
- 3) Answer **any twelve** questions from Part **B**. **Each** question carries 5 marks.
- 4) Scientific calculators are **allowed**.

PART – A

- I. Answer **any 10** questions :
 - 1) If $T:V\to V'$ is a linear transformation, then prove that Ker T is a subspace of V.
 - Let T : V→V be a linear transformation of V onto V, then prove that T is (1, 1) mapping if and only if T is onto.
 - 3) Let $V = R^2 = V'$ and let $T : V \rightarrow V'$ be a linear transformation which is rotated through θ° about the origin with respect to the basis {(1, 0), (0, 1)} of V and V', find the matrix of linear transformation.
 - 4) Show that the ring $M_n(F)$ has zero divisors.
 - 5) Find the row rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 1 & 2 & 3 \\ -3 & -6 & -9 & -3 \end{bmatrix}$.
 - 6) Define the rank of a linear transformation.

BSCMTC 382

BSCMTC 382

- 7) If A and B are similar matrices, then prove that rank A = rank B.
- 8) If A, B \in M_n(F), then show that , rank (A + B) = rank A + rank B by giving an example.
- 9) If $\sum_{i=1}^{11} a_{ij}x_j = 0$, i = 1, 2, ..., m be a system of 'm' homogeneous linear equations in 'n' unknowns. If m < n, prove that the system always has a nontrivial solution. 10) Find the minimal polynomial of the matrix $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix}$.
- 11) Find the characteristic roots of the matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$. 12) Show that the characteristic roots of A = $\begin{vmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{vmatrix}$ are the fourth
- 13) If $A \in M_n(F)$ and A^T be the transpose of A, then prove that $P_A(t) = P_A^T(t)$.
- 14) If $A \in M_n(F)$ is a nilpotent matrix, then prove that all its characteristic roots are zeros.

- II. Answer any 12 questions :
 - 1) Prove that a linear transformation $T: V \rightarrow V'$ is (1, 1) mapping if and only if KerT = $\{0\}$.
 - 2) Let T : V \rightarrow V' be a linear transformation of V onto V', with KerT = W. Prove that $\frac{V}{W} \cong V'$.
 - 3) Show that a linear transformation $T: V \rightarrow V'$ is (1, 1) if and only if it maps linearly independent set in V onto linearly independent set in V'.

 $(12 \times 5 = 60)$

- 4) Let V = C, the space of complex numbers and V' = R². Prove that the mapping T : V \rightarrow V' defined by T(a + ib) = (a, b) is a linear transformation. Also prove that T is an isomorphism.
- 5) Show that if A is nilpotent matrix then (I + A) is non-singular.
- 6) Let V = R³ and let T : V \rightarrow V' be a linear transformation defined by T(x, y, z) = (x', y', z') where x' = 2x, y'= 4y, z'= 5z. Find the matrix of T with respect to the basis $(\frac{2}{3}, 0, 0), (0, \frac{1}{2}, 0), (0, 0, \frac{1}{4})$ of V.
- 7) Let $V = V' = R^3$ and let $T : V \rightarrow V'$ be a linear transformation defined by T(x, y, z) = (x', y', z') where x' = x, y' = 2y, z' = x + y + z. Find the rank of T.
- 8) Using elementary row operations, find the row rank of the matrix A,

$$A = \begin{bmatrix} 6 & -2 & -18 \\ -4 & 1 & 11 \\ -5 & 2 & 16 \end{bmatrix}$$

- 9) Find A⁻¹ if $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ by performing elementary row operations.
- 10) Show that the system of equations has only trivial solution $x_1 + x_2 + x_3 = 0$ $2x_1 + 3x_2 + x_3 = 0$ $3x_1 + 6x_2 + 5x_3 = 0$.
- 11) Prove that a system of n, non homogeneous equations in n unknowns has a unique solution if and only if the associate matrix is non singular.
- 12) Find the dimension of the space of solutions if

$$2x_1 + x_2 - 3x_3 - x_4 = 0$$

$$x_1 + 2x_3 = 0$$

$$3x_1 - x_2 - x_3 + x_4 = 0.$$

BSCMTC 382

- 13) Let $A \in M_n(F)$ and let $q(x) \in F(x)$ be a minimum polynomial of A. If $f(x) \in F[x]$ is any other polynomial satisfied by A, then prove that q(x) divides f(x).
- 14) Let $A \in M_n(F)$ with $q(x) = a_0 + a_1x + a_2x^2 + \dots + x^m$ be the minimum polynomial of A. Then prove that A is non singular if and only if $a_0 \neq 0$.
- 15) Find the minimum polynomial of the matrix $A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -9 \\ 0 & 1 & 6 \end{bmatrix}$.
- 16) Let A∈ M_n(F) and λ₁,λ₂,λ₃, ..., λ_m∈ F be distinct characteristic roots of A. If v₁, v₂, v₃, ..., v_m are the corresponding characteristic vectors, then prove that v₁, v₂, v₃, ..., v_m are linearly independent.
- 17) Find the characteristic roots of the matrix $A = \begin{bmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{bmatrix}$.
- 18) If A and $B \in M_n(F)$ are such that B is similar to A, then prove that $P_A(t) = P_B(t)$.