Reg. No.

BSCMTC 382

Choice Based Credit System VI Semester B.Sc. Degree
 Examination, September 2022
 (CBCS) (2021-22 Batch Onwards)
 MATHEMATICS
 Linear Algebra - VIII (a)

Time : 3 Hours
Max. Marks : 80
Instructions : 1) Answer any ten questions from Part - A. Each question carries 2 marks.
2) Answers to Part - A should be written in the first few pages of the answer book before answers to Part - B.
3) Answer any twelve questions from Part - B. Each question carries 5 marks.
4) Scientific calculators are allowed.
PART - A
I. Answer any 10 questions :

1) If $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ is a linear transformation, then prove that $\operatorname{Ker} \mathrm{T}$ is a subspace of V.
2) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}$ be a linear transformation of V onto V , then prove that T is $(1,1)$ mapping if and only if T is onto.
3) Let $\mathrm{V}=\mathrm{R}^{2}=\mathrm{V}^{\prime}$ and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ be a linear transformation which is rotated through θ° about the origin with respect to the basis $\{(1,0),(0,1)\}$ of V and V^{\prime}, find the matrix of linear transformation.
4) Show that the ring $M_{n}(F)$ has zero divisors.
5) Find the row rank of the matrix $A=\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 2 & 1 & 2 & 3 \\ -3 & -6 & -9 & -3\end{array}\right]$.
6) Define the rank of a linear transformation.
7) If A and B are similar matrices, then prove that rank $A=$ rank B.
8) If $A, B \in M_{n}(F)$, then show that, $\operatorname{rank}(A+B)=\operatorname{rank} A+\operatorname{rank} B$ by giving an example.
9) If $\sum_{j=1}^{n} a_{i j} x_{j}=0, i=1,2, \ldots$, m be a system of ' m ' homogeneous linear equations in ' n ' unknowns. If $m<n$, prove that the system always has a nontrivial
10) Folution.
11) Find the characteristic roots of the matrix $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$.
12) Show that the characteristic roots of $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right]$ are the fourth
roots of unity.
13) If $A \in M_{n}(F)$ and A^{\top} be the transpose of A, then prove that $P_{A}(t)=P_{A}{ }^{\top}(t)$.
14) If $A \in M_{n}(F)$ is a nilpotent matrix, then prove that all its characteristic roots are zeros.
PART - B

II. Answer any 12 questions :

1) Prove that a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ is $(1,1)$ mapping if and only if KerT $=\{0\}$.
2) Let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ be a linear transformation of V onto V^{\prime}, with $\mathrm{KerT}=\mathrm{W}$. Prove that $\frac{\mathrm{V}}{\mathrm{W}} \cong \mathrm{V}^{\prime}$.
3) Show that a linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ is $(1,1)$ if and only if it maps linearly independent set in V onto linearly independent set in V^{\prime}.
4) Let $V=C$, the space of complex numbers and $V^{\prime}=R^{2}$. Prove that the mapping $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ defined by $\mathrm{T}(\mathrm{a}+\mathrm{ib})=(\mathrm{a}, \mathrm{b})$ is a linear transformation. Also prove that T is an isomorphism.
5) Show that if A is nilpotent matrix then $(I+A)$ is non-singular.
6) Let $\mathrm{V}=\mathrm{R}^{3}$ and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ be a linear transformation defined by $T(x, y, z)=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ where $x^{\prime}=2 x, y^{\prime}=4 y, z^{\prime}=5 z$. Find the matrix of T with respect to the basis $(2 / 3,0,0),\left(0, \frac{1}{2}, 0\right),\left(0,0, \frac{1}{4}\right)$ of V.
7) Let $\mathrm{V}=\mathrm{V}^{\prime}=\mathrm{R}^{3}$ and let $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{V}^{\prime}$ be a linear transformation defined by $T(x, y, z)=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ where $x^{\prime}=x, y^{\prime}=2 y, z^{\prime}=x+y+z$. Find the rank of T.
8) Using elementary row operations, find the row rank of the matrix A,

$$
A=\left[\begin{array}{ccc}
6 & -2 & -18 \\
-4 & 1 & 11 \\
-5 & 2 & 16
\end{array}\right]
$$

9) Find A^{-1} if $\left[\begin{array}{ccc}1 & 0 & 0 \\ 2 & 2 & -1 \\ 1 & -1 & 1\end{array}\right]$ by performing elementary row operations.
10) Show that the system of equations has only trivial solution
$x_{1}+x_{2}+x_{3}=0$
$2 x_{1}+3 x_{2}+x_{3}=0$
$3 x_{1}+6 x_{2}+5 x_{3}=0$.
11) Prove that a system of n, non homogeneous equations in n unknowns has a unique solution if and only if the associate matrix is non singular.
12) Find the dimension of the space of solutions if

$$
2 x_{1}+x_{2}-3 x_{3}-x_{4}=0
$$

$x_{1}+2 x_{3}=0$
$3 x_{1}-x_{2}-x_{3}+x_{4}=0$.
13) Let $A \in M_{n}(F)$ and let $q(x) \in F(x)$ be a minimum polynomial of A. If $f(x) \in F[x]$ is any other polynomial satisfied by A, then prove that $q(x)$ divides $f(x)$.
14) Let $A \in M_{n}(F)$ with $q(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots . .+x^{m}$ be the minimum polynomial of A. Then prove that A is non singular if and only if $a_{0} \neq 0$.
15) Find the minimum polynomial of the matrix $A=\left[\begin{array}{ccc}0 & 0 & 0 \\ 1 & 0 & -9 \\ 0 & 1 & 6\end{array}\right]$.
16) Let $A \in M_{n}(F)$ and $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{m} \in F$ be distinct characteristic roots of A. If $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \ldots ., \mathrm{v}_{\mathrm{m}}$ are the corresponding characteristic vectors, then prove that $v_{1}, v_{2}, v_{3}, \ldots, v_{m}$ are linearly independent.
17) Find the characteristic roots of the matrix $A=\left[\begin{array}{lll}3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3\end{array}\right]$.
18) If A and $B \in M_{n}(F)$ are such that B is similar to A, then prove that $P_{A}(t)=P_{B}(t)$.

