Reg. No. $\square$
BSCMTCN 201

# II Semester B.Sc. Degree Examination, September 2022 <br> (NEP 2020) (2021 - 22 Batch Onwards) <br> MATHEMATICS <br> Number Theory - II, Algebra - II and Calculus - II (DSCC) 

Time : 2 Hours
Max. Marks : 60

## Instructions : 1) Answer any ten questions from Part - A. Each question carries 2 marks. <br> 2) Answers to Part - A should be written in the first few pages of the answer book before answers to Part - B. <br> 3) Answer any eight questions from Part - B, choosing two questions from each Unit. Each question carries 5 marks. <br> 4) Use of scientific calculator is permitted.

PART - A

1. If $p$ is a prime, then prove that $a^{p} \equiv a(\bmod p)$ for any integer $a$.
2. If $p$ is a prime and $k>0$, then prove that $\phi\left(p^{k}\right)=p^{k}-p^{k-1}$.
3. Calculate $\phi$ (1001).
4. If $n=160$, find the sum of integers less than $n$ and relatively prime to $n$.
5. In a group $G$, prove the following :
i) $\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{a}, \forall \mathrm{a} \in \mathrm{G}$.
ii) $(a b)^{-1}=b^{-1} a^{-1}, \forall a, b \in G$.
6. If H and K are subgroups of G , then prove that $\mathrm{H} \cap \mathrm{K}$ is also a subgroup of G .
7. Prove that every cyclic group is an abelian group.
8. Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}-x y}{\sqrt{x}-\sqrt{y}}$.
9. Find $\frac{\partial^{2} f}{\partial x^{2}}$ if $f(x, y)=x^{2}+3 x y+y-1$.
10. Find $\frac{\partial z}{\partial x}$ if the equation $y z-\ln z=x+y$.
11. Evaluate $\int_{C}\left(3 x^{2}-2 y+z\right) d s$, where $C$ is the line segment joining from $(0,0,0)$ to (2, 2, 2).
12. Evaluate $\int_{0}^{\pi} \int_{0}^{x} x \sin y d y d x$.
13. Evaluate $\iint_{R} d y d x$, where $R$ is the region bounded by $y=2 x^{2}$ and $y^{2}=4 x$.
14. Evaluate $\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{2} d x d z d y$.

$$
\begin{gathered}
\text { PART - B } \\
\text { Unit - I }
\end{gathered}
$$

15. State and prove Euler's theorem.
16. If $p$ is a prime, then prove that $(p-1)!\equiv-1(\bmod p)$.
17. For each positive integer $n \geq 1$, then prove that $n=\sum_{d \mid n} \phi(d)$, the sum being
extended over all positive divisors of $n$.
18. Express $\frac{187}{57}$ as a finite simple continued fraction.
Unit - II
19. Let H and K be subgroups of a group G . Then prove that HK is a subgroup of G , if and only if, $\mathrm{HK}=\mathrm{KH}$.
20. Prove that a subgroup of cyclic group is a cyclic group.
21. Let $H$ and $K$ be subgroups of a group $G$ such that $H K$ is a subgroup of $G$, then prove that $\mathrm{O}(\mathrm{HK})=\frac{\mathrm{o}(\mathrm{H}) \mathrm{o}(\mathrm{K})}{\mathrm{o}(\mathrm{H} \cap \mathrm{K})}$.
22. Define a centre of a group. Prove that the centre $Z(G)$ of a group $G$ is a subgroup of $G$.

## Unit - III

23. Applying the two-path test, show that the function $f(x, y)=\frac{2 x^{2} y}{x^{4}+y^{2}}$ has no limit
as $(x, y) \rightarrow(0,0)$.
24. If $f(x, y)=x \cos y+y e^{x}$, find $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial y \partial x}, \frac{\partial^{2} f}{\partial y^{2}}, \frac{\partial^{2} f}{\partial x \partial y}$.
25. If $w=x+2 y+z^{2}, x=\frac{r}{s}, y=r^{2}+\ln s, z=2 r$, then find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$.
26. Find the local extreme values of the function $f(x, y)=x y-x^{2}-y^{2}-2 x-2 y+4$.

## Unit - IV

27. Find the volume of the prism whose base is the triangle in the $x y$ - plane bounded by the x - axis and the lines $\mathrm{y}=\mathrm{x}$ and $\mathrm{x}=1$ and whose top lies in the plane.
28. Evaluate $\iint_{R} f(x, y) d A$, where $f(x, y)=x^{2}+y^{2}$ and $R$ is the region at triangle with vertices $(0,0),(1,0)$ and $(0,1)$.
29. By changing Cartesian integral into polar co-ordinates, evaluate $\iint_{R} e^{x^{2}+y^{2}} d y d x$, where $R$ is the semicircular region bounded by the $x$ - axis and the curve $y=\sqrt{1-x^{2}}$.
30. Evaluate $\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}}} d z d y d x$.
