BSCMTCN 201

II Semester B.Sc. Degree Examination, September 2022 (NEP 2020) (2021 – 22 Batch Onwards) MATHEMATICS

Number Theory – II, Algebra – II and Calculus – II (DSCC)

Time : 2 Hours

Max. Marks : 60

 $(10 \times 2 = 20)$

- Instructions : 1) Answer any ten questions from Part A. Each question carries 2 marks.
 - 2) Answers to Part **A** should be written in the first few pages of the answer book before answers to Part **B**.
 - Answer any eight questions from Part B, choosing two questions from each Unit. Each question carries 5 marks.
 - 4) Use of scientific calculator is permitted.

- 1. If p is a prime, then prove that $a^p \equiv a \pmod{p}$ for any integer a.
- 2. If p is a prime and k > 0, then prove that $\phi(p^k) = p^k p^{k-1}$.
- 3. Calculate ϕ (1001).
- 4. If n = 160, find the sum of integers less than n and relatively prime to n.
- 5. In a group G, prove the following :
 - i) $(a^{-1})^{-1} = a, \forall a \in G.$
 - ii) $(ab)^{-1} = b^{-1}a^{-1}, \ \forall \ a, \ b \in G.$
- 6. If H and K are subgroups of G, then prove that $H \cap K$ is also a subgroup of G.
- 7. Prove that every cyclic group is an abelian group.

8. Find
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$

P.T.O.

BSCMTCN 201

9. Find
$$\frac{\partial^2 f}{\partial x^2}$$
 if $f(x, y) = x^2 + 3xy + y - 1$.
10. Find $\frac{\partial z}{\partial x}$ if the equation $yz - \ln z = x + y$.

11. Evaluate $\int_{C} (3x^2 - 2y + z)ds$, where C is the line segment joining from (0, 0, 0) to (2, 2, 2).

12. Evaluate
$$\iint_{0}^{\pi x} x \sin y \, dy \, dx$$
.
13. Evaluate $\iint_{R} dy \, dx$, where R is the region bounded by $y = 2x^2$ and $y^2 = 4x$.
14. Evaluate $\int_{0}^{1} \int_{0}^{1-y} \int_{0}^{2} dx \, dz \, dy$.
PART – B
Unit – I

- 15. State and prove Euler's theorem.
- 16. If p is a prime, then prove that $(p 1)! \equiv -1 \pmod{p}$.
- 17. For each positive integer $n \ge 1$, then prove that $n = \sum_{d|n} \phi(d)$, the sum being extended over all positive divisors of n.
- 18. Express $\frac{187}{57}$ as a finite simple continued fraction.

Unit – II

- 19. Let H and K be subgroups of a group G. Then prove that HK is a subgroup of G, if and only if, HK = KH.
- 20. Prove that a subgroup of cyclic group is a cyclic group.
- 21. Let H and K be subgroups of a group G such that HK is a subgroup of G, then prove that $o(HK) = \frac{o(H)o(K)}{o(H \cap K)}$.
- 22. Define a centre of a group. Prove that the centre Z(G) of a group G is a subgroup of G.

-2-

Unit – III

- 23. Applying the two-path test, show that the function $f(x, y) = \frac{2x^2y}{x^4 + y^2}$ has no limit as $(x, y) \rightarrow (0, 0)$.
- 24. If $f(x, y) = x \cos y + ye^x$, find $\frac{\partial^2 f}{\partial x^2}$, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$, $\frac{\partial^2 f}{\partial x \partial y}$.
- 25. If $w = x + 2y + z^2$, $x = \frac{r}{s}$, $y = r^2 + \ln s$, z = 2r, then find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$.
- 26. Find the local extreme values of the function $f(x, y) = xy x^2 y^2 2x 2y + 4$.

Unit – IV

- 27. Find the volume of the prism whose base is the triangle in the xy plane bounded by the x – axis and the lines y = x and x = 1 and whose top lies in the plane.
- 28. Evaluate $\iint_{R} f(x, y) dA$, where $f(x, y) = x^2 + y^2$ and R is the region at triangle with vertices (0, 0), (1, 0) and (0, 1).
- 29. By changing Cartesian integral into polar co-ordinates, evaluate $\iint_{R} e^{x^2+y^2} dy dx$, where R is the semicircular region bounded by the x axis and the curve $y = \sqrt{1-x^2}$.
- 30. Evaluate $\int_{0}^{3\sqrt{9-x^2}} \int_{0}^{\sqrt{9-x^2}} \int_{0}^{\sqrt{9-x^2}} dz dy dx$.