P.T.O.

Reg. No.

Credit Based IV Semester B.Sc. Degree Examination, September 2022 (2019 – 20 and Earlier Batches) PHYSICS Electricity and X-Ray Crystallography

Time : 3 Hours

Instructions : i) Answer questions from all Parts.

- *ii)* Answers to the multiple choice questions should be written on the **first page** of the answer book.
- iii) Scientific calculators are **allowed**.

PART – A

1.	Ans ans	nswer the following questions by choosing the most appropriate (1×1)					
	i)	Under maximun	n power transfer c	onditions, the ope	rating efficiency is		
	ii)	a) LoveInternal resistanta) Infinityc) Very low	nce of an ideal cur	rent source is b) Very high d) Zero			
	iii) The time constant of RC circuit is						
		a) $\frac{R}{C}$	b) $\frac{C}{R}$	c) RC	d) R ² C		
	iv)	v) Form factor for DC is					
		a) 1	b) 1.11	c) 1.21	d) 1.31		
		a) Zero	b) Maximum	c) Minimum	d) One		
	vi)						
		a) $Q_0 f_0$	b) $\frac{R}{2\pi L}$	c) $\frac{R}{4\piL}$	d) None of these		
	vii)	The SI unit of m a) Weber	agnetic flux densi b) Tesla	ty is c) Weber/m³	d) Weber/m ⁴		

BSCPHC 253

Max. Marks : 80

BSCPHC 253			-2-			
	viii	The presence of high resistance	in s	eries with BG preve	nts excessive	
		a) Swings	b)	Damping		
		c) Throw	d)	None		
	ix)	The transition temperature of me	ercur	y is		
		a) 1 K	b)	1.14 K		
		c) 4.12 K	d)	9.22 K		
x) The longer wavelength end of X-ray spectrum is knc				spectrum is known	as	
		a) Hard X-ray	b)	Soft X-ray		
		c) Black X-ray	d)	White X-ray		
2.	An	Answer any five of the following. (2×5=			(2×5=1	0)
	a)	Show that L/R has the dimension	s of	time.		
b) Define node and loop.						
c) What is sharpness of resonance ? Explain.						
d) Give Lorentz force relation.						
e) How is damping reduced in a B.G. ?						
f) Explain Meissner effect.						
g) State and explain Duane-Hunt's law.						
PART – B						
		U	NIT -	- 1		
3.	a)	Explain the method of Nortonising	gac	ircuit.		4
	b)	Give the theory of discharge of a	capa	acitor in LCR circuit.		6
		OR				
4.	a)	Obtain an expression for decay constant of the circuit.	of	charge in a CR cir	cuit. Define time	4
	b)	State and prove maximum power t of maximum power transfer theor	rans em.	fer theorem. Mention	n two applications	6

BSCPHC 253

5

5. a) Using superposition theorem, determine the current through the resistor. **5**

- OR
- b) A condenser of capacity 0.5 μ F and leakage resistance 10 M Ω is charged to a certain potential and then discharged. Find the time the potential will take fall to half its original value.
 - UNIT II

6.	a)	Obtain an expression for current in LR circuit.	4
	b)	Derive an expression for current in a series LCR circuit hence obtain the expression for resonant frequency.	6
		OR	
7.	a)	Obtain the relationship between rms value and peak value of AC.	4
	b)	Compare series resonance and parallel resonance.	6
8.	a)	A simple low pass RC filter having a cut off frequency of 1 KHz is connected to a AC source of 10 V with variable frequency. Calculate the value of C if $R = 10 \text{ K}\Omega$.	5
		OR	
	b)	An inductor of 200 mH and a resistor of 100 Ω are connected in series to an AC source of 230 V, 50 Hz. Calculate the impedance, current and phase angle.	5
		UNIT – III	
9.	a)	Describe a B.G. with a neat diagram.	4
	b)	Give the theory of Anderson's bridge.	6
		OR	
10.	a)	Give the theory of De-Sauty's bridge to find the ratio of capacitances.	4
	b)	Derive the expression for torque on a current loop in a magnetic field. Hence show that a coil behaves as a magnetic dipole.	6

-3-

BSCPHC 253

-4-

11. a) A proton of energy 5 MeV is moving vertically downwards in a uniform horizontal magnetic field of 2T. Find the magnitude of the force acting on it. Given : mass of the proton = 1.7×10^{-27} kg, charge of proton = 1.6×10^{-19} C. **5**

OR

 b) A condenser is charged to a potential of 2 V and then discharged through B.G. giving a throw of 10 cm. If its period is 7.2 S and current sensitivity is 130 μA/cm. Calculate the capacitance of the condenser.

$\mathsf{UNIT} - \mathsf{IV}$

12.	a)	What are Miller indices ? Illustrate with one example.	4
	b)	Explain any two important uses of superconductors and mention any three properties of superconductor.	6
		OR	
13.	a)	What is superconductivity ? Write a note on high temperature superconductivity.	4
	b)	Explain the origin of continuous and characteristic X-rays.	6
14.	a)	An X-ray machine has an accelerating voltage of 25 KV. Find the shortest wavelength present in the X-ray spectrum and also evaluate its frequency as well as the energy of photon. Given : $h = 6.625 \times 10^{-34}$ Js, $C = 3 \times 10^8$ m/s, $e = 1.6 \times 10^{-19}$ C.	5
		OR	

b) X-rays of wavelength 0.71 Å are reflected from the (1 1 0) plane of a rock salt crystal (a = 2.82 Å). Calculate the glancing angle corresponding to second order reflection.

5

5