Reg. No. \square
BSCPHC 281

Choice Based Credit System IV Semester B.Sc. Examination, September 2022 (2020-21 Batch Onwards) PHYSICS
 Electricity and X-ray Crystallography

Time : 3 Hours
Max. Marks : 80
Instructions : 1) Answer questions from all Units.
2) Scientific calculators are allowed.

PART - A

1. Answer any eight of the following :
a) What is the internal resistance of an ideal current source ?
b) What are transient currents ?
c) State superposition theorem.
d) What is wattless current?
e) What is band pass filter?
f) Define magnetic flux density.
g) What is damping in B.G ?
h) What are Miller Indices ?
i) State Bragg's law.
2. Answer any six of the following :
a) Show that L/R has dimension of time.
b) State Kirchhoff's laws.
c) Why a series LCR circuit called an acceptor circuit?
d) Distinguish between Inductive reactance and Capacitive reactance.
e) What is magnetic dipole and magnetic dipole moment ?
f) Define charge sensitivity of a B.G and write its unit.
g) State and explain Mosley's law.
h) Explain isotopic effect in a super conductor.

$$
\begin{gathered}
\text { PART - B } \\
\text { Unit - I }
\end{gathered}
$$

3. a) Derive an expression for the growth of charge in a CR circuit.
b) State Norton's theorem. Explain the method of Nortonising the circuit. Explain how Thevenin's equivalent can be obtained from Norton's equivalent.

OR
4. a) State and prove maximum power transfer theorem.
b) Give the theory of discharging of a capacitor in LCR circuit.
5. a) A battery of emf 100 V is connected in series with an inductance of 100 mH and a capacitor of $0.05 \mu \mathrm{~F}$ and a resistor of 100Ω. Find :
i) The frequency of the oscillatory current
ii) The final charge on the capacitor.

OR
b) Apply Thevenin's theorem to find the current through 12Ω resistor of the circuit.

Unit - II
6. a) Obtain the relationship between rms value and peak value of current.
b) Derive an expression for the current in a series LCR circuit. Hence obtain the expression for resonance frequency.
7. a) Derive an expression for Power in an AC circuit.
b) Discuss about RC Low pass filter and derive an expression for cut-off frequency.
8. a) An AC circuit consists of a coil of resistance 15Ω and inductive reactance 20Ω and is worked at $200 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find the value of current and phase lag.

OR

b) A circuit contains capacitor of $50 \mu \mathrm{~F}$, an inductance of 5 H and a resistor of 15Ω all in series with a $220 \mathrm{~V}, 50 \mathrm{~Hz}$ AC supply. Calculate the resonant frequency and Q-factor of a series LCR circuit.

Unit - III

9. a) Obtain the formula for the force on a current carrying conductor placed in a magnetic field.
b) Give the theory of B.G and obtain an expression for the charge passing through it.

OR

10. a) Give the theory of De-Sauty bridge to find the ratio of capacitances.
b) Give the theory of Anderson's bridge.
11. a) A condenser is charged to a potential of 2 V and then discharged through a B.G giving a throw of 10 cm . If its period is 7.2 s and the current sensitivity is $\frac{1}{30} \mu \mathrm{~A} / \mathrm{cm}$. Calculate the capacitance of the condenser.

OR
b) A circular coil of area $5 \mathrm{~cm}^{2}$ and having 100 turns is placed in a uniform magnetic field of 1.5 T . When a current of 0.2 A is passed through the coil, find the magnetic dipole moment of the coil and maximum torque produced.
Unit - IV
12. a) Explain the origin of characteristic X-rays.
b) What is superconductivity and transition temperature ? Explain Meissner effect and the action of external magnetic field on a superconductor.
13. a) Explain two applications of superconductor.
b) Describe Bragg's Spectrometer and explain how it is used to determine the wavelength of X-rays.
14. a) Monochromatic X-ray beam of wavelength $0.7 A^{\circ}$ undergo first order Bragg's reflection from the plane (302) of a cubic crystal at a glancing angle of $39^{\circ} 7^{\prime} 19^{\prime \prime}$. Calculate the lattice constant.

OR
b) First order Braggs reflection occurs when monochromatic beam of X-rays of wavelength $0.675 \mathrm{~A}^{\circ}$ is incident on a crystal at a glancing angle of $4^{\circ} 51^{\prime}$. What is the glancing angle for third order Bragg reflection to occur ?

