Reg. No. \square

Credit Based VI Semester B.Sc. Degree Examination, September 2022 (2020 - 21 and Earlier Batches)

PHYSICS (Paper - VIII)
Electronics
Time : 3 Hours
Max. Marks : 80
Instructions : i) Answer questions from all Units.
ii) Multiple choice questions must be answered in the first page of the answer book only.
iii) Scientific calculators are allowed.

PART - A

1. Answer the following questions by choosing the most appropriate answer. ($1 \times 10=10$)
i) In a Zener voltage regulator, the Zener diode is \qquad biased.
a) Forward
b) Reverse
c) Both forward and reverse
d) Unbiased
ii) CMRR of an OPAMP is 10^{4}. Its value in dB is
a) 100
b) 40
c) 80
d) 60
iii) For an OPAMP which of the following is true ? OPAMP amplifies.
a) DC signal
b) AC signal
c) Difference of two inputs
d) All $[a)$, b) and c)]
iv) A n-channel e-MOSFET can be operated with
a) Positive gate voltage only
b) Negative gate voltage only
c) Both positive and negative gate voltages
d) Gate voltage above threshold
v) In a feedback amplifier feedback fraction is $1 / 4$. To obtain oscillation gain of the amplifier is
a) +3
b) -3
c) -4
d) 4
vi) Oscillators are the amplifiers with input supplied them is
a) 0
b) ∞
c) 1
d) -1
vii) OR gate produces output state 1 when
a) Both the inputs in state 0
b) Both the inputs and either of the inputs state 1
c) Either of the inputs state 1
d) Both the inputs in state 1
viii) Serial shift register is the one in which data were entered
a) One bit at a time
b) All the bits at same time
c) More than two bits at a time
d) All of the above
ix) In amplitude modulation, side bands contain \qquad of useful power of total power AM transmitted.
a) 33.33%
b) 50.33%
c) 100%
d) 66.66%
x) In satellite communication angular separation between three satellites to cover entire earth (except polar region) is
a) 60°
b) 120°
c) 180°
d) 90°
2. Answer any five of the following :
i) Draw input and output wave forms of a full wave rectifier.
ii) What are the values of cut off frequency and band width of IC 741 ?
iii) Distinguish between BJT and FET.
iv) Give any two comparisons between positive and negative feedbacks.
v) Draw the logic diagram using NAND gates for the equation $\mathrm{Y}=\mathrm{A}+\mathrm{B}$.
vi) Give the truth table of half adder circuit.
vii) Draw a block diagram for CRT.

$$
\begin{gathered}
\text { PART - B } \\
\text { Unit - I }
\end{gathered}
$$

3. a) Construct Zener voltage regulator circuit and explain its working in terms of line regulations.
b) Explain the concept of virtual ground. Construct OPAMP inverting amplifier and obtain expression for voltage gain.

OR
4. a) What are the characteristics of ideal OPAMP ? Describe any two characteristics of IC 741.
b) Explain with a circuit diagram, the working of full wave bridge rectifier and obtain expressions for ripple factor and efficiency.
5. a) In a Zener voltage regulator, find line current, load current, Zener current and power dissipated across the load R_{L} from the data given below :
Given : $\mathrm{V}_{\mathrm{i}}=50 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=5 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{z}}=10 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=5 \mathrm{~K} \Omega$.
OR
b) Using OPAMP it is required to design inverting and non-inverting amplifiers. For an input resistance of $1 \mathrm{k} \Omega$ and input voltage of 1 V , non-inverting amplifier produces output voltage of 6 V . Determine gain and feedback resistance of non-inverting amplifier. If same combination of resistors were maintained, what would be the gain of the inverting amplifier ?
Unit - II
6. a) Using concept of feedback obtain a condition for Barkhausen criterion.
b) Using suitable diagrams give the construction and working of n -channel e-MOSFET.
7. a) Explain drain and transfer characteristics of d-MOSFET.
b) What is an oscillator? With a circuit diagram explain the working of RC phase shift oscillator.
8. a) The voltage gain of an amplifier with 5% negative feedback is 100 . What is the gain without feedback? Also find the loop gain.
b) Using following experimental data of e-MOSFET find :
i) $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ voltage
ii) AC drain resistance
iii) Trans-conductance
iv) Amplification factor.

$\mathrm{I}_{\mathrm{D}(\mathrm{ON})}=\mathbf{4} \mathbf{~ m A}, \mathbf{k}=0.278 \mathrm{mAV}^{-2}$ at $\mathrm{V}_{\mathrm{GS}}=6.793 \mathbf{V}$			
$\mathrm{V}_{\mathrm{GS}}(\mathrm{V})$	4	4	5
$\mathrm{~V}_{\mathrm{DS}}(\mathrm{V})$	7	12	12
$\mathrm{I}_{\mathrm{D}}(\mathrm{mA})$	8	8.5	8.25

Unit - III

9. a) Construct RS flip-flop using NOR gate and explain its operation.
b) Construct and realize the logic patterns of NOT, AND, OR and XOR gates using NAND gate. Comment on the overall result.
10. a) Using a block diagram explain the working of $B C D$ to seven segment decoders.
b) Construct mod 10-decade counter. Use timing diagram and truth table to explain its working.
11. a) Simplify the following Boolean equation and draw logical diagram for it.

$$
Y=A \bar{B}+A \overline{B C}+A B \overline{C D}+A B C D
$$

OR
b) Table given below shows output state 1 for following combination of inputs. Using sum of product method set SOP equation, simplify and draw logic diagram for it.

A	B	Fundamental product
1	0	
0	1	
1	1	

> Unit - IV
12. a) Describe any two applications of CRO.
b) Derive an expression for the instantaneous voltage of an AM wave and obtain an expression for total power in terms of Modulation index.
13. a) What is demodulation ? Explain demodulation using diode detector.
b) Describe the role of ionosphere in sky wave propagation and explain :
i) Skip distance
ii) Maximum usable frequency.
14. a) A sinusoidal carrier wave of frequency 10 MHz and amplitude of 60 V is amplitude modulated by 2 KHz wave with modulation index 40%. Find the side band frequencies and their amplitudes. What is the band width of modulated wave?

OR
b) An AM transmitter radiates radio-wave of 30 kW at modulation index 80%. Calculate the percentage of power associated with carrier wave and each of the side bands.

