Reg. No. \square

Choice Based Credit System Sixth Semester B.Sc. Degree Examination, September 2022
 (2021 - 22 Batch Onwards)
 PHYSICS
 Nuclear Physics

Time : 3 Hours
Max. Marks : 80
Instructions : i) Answer questions from all Units.
ii) Scientific calculators are allowed.

PART - A

1. Answer any eight of the following questions :
i) What is threshold energy of a nuclear reaction?
ii) What is radioactive series ?
iii) What is radio carbon dating ?
iv) What are nuclear forces ?
v) What is a chain reaction?
vi) What is stellar energy ?
vii) What are quarks ?
viii) Write the necessary condition for the working of cyclotron.
ix) What are hard cosmic rays ?
2. Answer any six of the following questions :
i) What is the significance of Q value of a nuclear reaction ?
ii) What is K-electron capture ? Explain.
iii) Define curie and becquerel.
iv) Explain nuclear fission with an example.
v) What are magic numbers ? Mention them.
vi) Write any two drawbacks of liquid drop model.
vii) What is quenching ? Name the compound used in organic quenching.
viii) Write the decay scheme of μ^{+}and μ^{-}particles.
ix) Write any two advantages of cyclotron.

PART - B
 Unit - I

3. a) Explain the interactions of gamma rays with matter.
b) What is an endoergic reaction ? Deduce the expression for the threshold energy of an endoergic reaction.

3

5
c) With elements A, B and C forming a radioactive series (C being stable), derive an expression for the number of atoms of B if at start B was not present in the sample.

OR
4. a) What is tunnel effect? Quantitatively account for tunnel effect.
b) What is beta ray spectra ? Explain any four paradoxes of beta ray spectra.
c) Discuss the experiment leading to the discovery of neutrons. Explain any four properties of neutrons.
5. a) A carbon specimen found in excavation contain $1 / 8$ as much ${ }^{14} \mathrm{C}$ as an equal amount of carbon in living matter. Calculate the approximate age of the specimen. Half life of ${ }^{14} \mathrm{C}=5568$ years.

OR
b) Calculate the threshold energy required to initiate the reaction ${ }^{31} \mathrm{P}(\mathrm{n}, \mathrm{p}){ }^{31} \mathrm{Si}$. Given atomic masses ${ }_{1}^{1} \mathrm{H}=1.00814 \mathrm{amu}$, neutron $=1.00895 \mathrm{amu}$. ${ }_{15}^{31 \mathrm{P}}=30.98356 \mathrm{amu}$ and ${ }_{14}^{31} \mathrm{Si}=30.98514 \mathrm{amu}$.
Unit - II
6. a) Explain Yukawa's meson field theory.
b) Derive four factor formula for a nuclear reactor.
c) Describe with theory the working of dempster's mass spectrograph and explain how isotopic abundances can be determined.

OR
7. a) Explain C-N cycle of fusion in stars.
b) Write any five properties of nuclear forces.
c) With a neat and labelled diagram, explain the working of a nuclear reactor.
8. a) An alpha particle of energy 5 MeV approaches the gold nucleus with an impact parameter $2.6 \times 10^{-13} \mathrm{~m}$. Through what angle will it be scattered?

The atomic number of gold is 79 .

OR
b) A city requires 100 MW of electrical power per day which is supplied by a nuclear reactor of efficiency 40%. Calculate the amount of $U-235$ fuel required per day of operation. (Assume the average energy of 200 MeV released per fission).

Unit - III

9. a) Write a note on origin of cosmic rays.
b) Describe the working of GM tube with the necessary diagram.
c) Explain the principle of a betatron. Hence derive an expression for the final energy gained by the electrons.

OR
10. a) Write a note on Van allen radiation belts.
b) Explain the variation of cosmic ray intensity with :
i) Altitude and
ii) East-west direction.
c) Explain the condition for synchronisation in a linear accelerator and obtain the expression for the maximum energy of the particles ejected from the accelerator.
11. a) The radius of cyclotron DEE is 0.4 m and the applied magnetic field is $1.5 \mathrm{~Wb} / \mathrm{m}^{2}$. What is the maximum energy of a beam of protons ?
Given : Mass of proton $=1.67 \times 10^{-27} \mathrm{~kg}$.
OR
b) Electrons are accelerated in a betatron working at 50 Hz frequency and has a stable orbit of radius 2 meter having the magnetic field strength 5 T at the orbit. Calculate the average energy per revolution gained by the particles. (Express the energy in eV). Assume electrons are moving with velocity C .4

