Reg. No.

Second Semester B.Sc. Degree Examination, September 2022 (NEP 2020) (2021 - 22 Batch Onwards) **PHYSICS (DSCC) Electricity and Magnetism**

Time: 2 Hours

Instructions : 1) Answer questions from all Parts. 2) Scientific calculators are **allowed**.

PART - A

Answer **any four** questions. **Each** question carries **2** marks. $(4 \times 2 = 8)$

- 1. Mention any two properties of charges.
- 2. State and explain Gauss' law in electrostatics.
- 3. What is an electrical insulator ? Give an example.
- 4. Define time constant in charging a capacitor.
- 5. What is RC Low Pass Filter ? Draw the circuit diagram.
- 6. Define divergence of a vector. What is its significance ?

PART – B

Answer all questions.

Unit – I

- 7. a) Derive an expression for the electric field due to a charged spherical conductor at a point outside the sphere.
 - b) Derive an expression for the electric potential due to a charged spherical conductor at a point (i) outside the sphere, (ii) on the sphere and (iii) inside the sphere.

BSCPHCN 201

Max. Marks: 60

 $(4 \times 10 = 40)$

4

6

BSCPHCN 201		HCN 201 -2-		
8.	a)	Define electric field intensity and electric potential. Obtain the relation connecting them.	4	
	b)	Derive an expression for the electric field due to a charged infinitely long straight conductor.	6	
Unit – II				
9.	a)	Explain electric polarization in dipoles.	4	
	b)	Obtain an expression for the growth of current in a series LR circuit with a steady emf. Define time constant of the circuit.	6	
4.0	,			
10.	a)	Explain the effect of electric field on a conductor.	4	
	D)	time constant.	6	
Unit – III				
11.	a)	Derive an expression for RMS value of AC in terms of peak value.	4	
	b)	Discuss RC high pass filter and derive an expression for cut off frequency. OR	6	
12.	a)	Write any four differences between series resonance and parallel resonance.	4	
	b)	Derive an expression for Hall coefficients and Hall voltage.	6	
	Unit – IV			
13.	a)	Derive Maxwell's relation $n = \sqrt{\in_r}$.	4	
	b)	Derive the equation $\vec{\nabla} \times \vec{B} = \mu \left(\sigma \vec{E} + \epsilon \frac{\delta \vec{E}}{\delta t} \right).$ OR	6	
14.	a)	State Gauss and Stokes theorem. Express them in vector form.	4	
	b)	Derive the wave equation for the field vectors \vec{E} and \vec{B} . Hence arrive at the		

equation for the velocity of electromagnetic wave in a medium. 6

PART – C

- 15. Answer **any three** questions. **Each** question carries **4** marks. (3×4=12)
 - a) Two charges $+4\mu$ C and -1μ C are kept 1m apart in air. Find the positions along the line joining the charges at which the potential is zero.
 - b) A parallel plate capacitor has circular plate of radius 4 mm and plates are 0.4 mm apart. Calculate capacitance of the capacitor. Find energy stored in it if a cell of emf 12 V is connected across it.
 - c) Calculate Hall constant and Hall mobility for sodium. Given atomic weight of sodium is 23. Its density is 970 kg/m³ and conductivity = 2.1×10^{7} ohm⁻¹m⁻¹.
 - d) Prove that the vector $\vec{A} = 3y^4z^2\hat{i} + 4x^3z^2\hat{j} 3x^2y^2\hat{k}$ is solenoidal.

-3-