Reg. No.

Credit Based IV Semester B.Sc. Degree Examination, September 2022 (2019-20 and Earlier Batches) STATISTICS Sampling Theory (Paper - IV)

Time : 3 Hours
Max. Marks : 80

Instructions : 1) Single answer booklet containing 40 pages will be issued.
 2) No additional sheets will be issued.

PART - A

1. Answer any ten of the following:
a) Define population and a sample.
b) What do you mean by judgement sampling?
c) Define simple random sampling.
d) Under SRSWR prove that $E(\bar{y})=\bar{y}$.
e) Prove that SRSWOR is more precise than SRSWR.
f) List all possible samples of size three under SRSWOR from a population consisting of five units $\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{y}_{3}, \mathrm{y}_{4}$ and y_{5}.
g) What is finite population correction?
h) Briefly explain the need for stratification.
i) Describe optimum allocation in stratified random sampling.
j) Under systematic sampling with usual notation prove that $E\left(\bar{y}_{\text {sys }}\right)=\bar{y}$.
k) State any one advantage and disadvantage of systematic sampling.
I) With usual notations prove that $E(p)=P$.

PART - B

Answer any five of the following :
(6×5=30)
2. Explain census survey and sample survey.
3. Explain the method of drawing a random sample from a frequency table.
4. Show that under SRSWR, $E\left(s^{2}\right)=\sigma^{2}$.
5. Under SRSWOR prove that sample mean is an unbiased estimator of the population mean.
6. With usual notations, show that $\mathrm{V}\left(\overline{\mathrm{y}}_{\text {st }}\right)$ is minimum for a fixed sample size n if $n_{h} \propto N_{h} S_{h}$.
7. Prove that $\mathrm{V}\left(\overline{\mathrm{y}}_{\text {st }}\right)_{\text {prop }} \leq \mathrm{V}(\overline{\mathrm{y}})_{\text {SRSWOR }}$.
8. With usual notations, prove that systematic sampling is more efficient than simple random sampling if $S_{\text {wsy }}^{2}>S^{2}$.
9. With usual notations, show that $\mathrm{V}(\mathrm{p})=\frac{\mathrm{N}-\mathrm{n}}{\mathrm{N}-1} \cdot \frac{\mathrm{PQ}}{\mathrm{n}}$.
PART - C

Answer any three of the following :
10. Explain the principal steps in a sample survey.
11. Show that $V(\bar{y})=\frac{N-n}{N n} S^{2}$ under SRSWOR.
12. Prove that in stratified random sampling with given cost function of the form $C=a+\Sigma c_{i} n_{i}, i=1$ to $k, V\left(\bar{y}_{s t}\right)$ is minimum if $n_{i} \alpha \frac{N_{i} S_{i}}{\sqrt{C_{i}}}$.
13. With usual notations prove that $\mathrm{V}\left(\bar{y}_{\text {sys }}\right)=\frac{\mathrm{N}-1}{\mathrm{~N}} \cdot \mathrm{~S}^{2}-\frac{\mathrm{k}(\mathrm{n}-1)}{\mathrm{N}} \cdot \mathrm{S}_{\text {wsy }}^{2}$. Also compare $\mathrm{V}\left(\overline{\mathrm{y}}_{\mathrm{sys}}\right)$ with $\mathrm{V}(\overline{\mathrm{y}})_{\mathrm{SRSWOR}}$.

