Reg. No.

Credit Based IV Semester B.Sc. Degree Examination, September 2022 (2019-20 and Earlier Batches) STATISTICS Sampling Theory (Paper – IV)

Time : 3 Hours

Instructions : 1) *Single answer booklet containing* **40** *pages will be issued.*

2) No additional sheets will be issued.

PART – A

- 1. Answer any ten of the following :
 - a) Define population and a sample.
 - b) What do you mean by judgement sampling ?
 - c) Define simple random sampling.
 - d) Under SRSWR prove that $E(\overline{y}) = \overline{y}$.
 - e) Prove that SRSWOR is more precise than SRSWR.
 - f) List all possible samples of size three under SRSWOR from a population consisting of five units y₁, y₂, y₃, y₄ and y₅.
 - g) What is finite population correction ?
 - h) Briefly explain the need for stratification.
 - i) Describe optimum allocation in stratified random sampling.
 - j) Under systematic sampling with usual notation prove that $E(\overline{y}_{sys}) = \overline{y}$.
 - k) State any one advantage and disadvantage of systematic sampling.
 - I) With usual notations prove that E(p)=P.

Max. Marks : 80

(2×10=20)

BSCSTC 252

BSCSTC 252

PART – B

Answer any five of the following :

- 2. Explain census survey and sample survey.
- 3. Explain the method of drawing a random sample from a frequency table.
- 4. Show that under SRSWR, $E(s^2)=\sigma^2$.
- 5. Under SRSWOR prove that sample mean is an unbiased estimator of the population mean.
- 6. With usual notations, show that $V(\overline{y}_{st})$ is minimum for a fixed sample size n if $n_h \alpha N_h S_h$.
- 7. Prove that $V(\overline{y}_{st})_{prop} \leq V(\overline{y})_{SRSWOR}$.
- 8. With usual notations, prove that systematic sampling is more efficient than simple random sampling if $S_{wsy}^2 > S^2$.
- 9. With usual notations, show that $V(p) = \frac{N-n}{N-1} \cdot \frac{PQ}{n}$.

Answer any three of the following :

(10×3=30)

- 10. Explain the principal steps in a sample survey.
- 11. Show that $V(\overline{y}) = \frac{N-n}{Nn}S^2$ under SRSWOR.
- 12. Prove that in stratified random sampling with given cost function of the form

$$C = a + \Sigma c_i n_i$$
, $i = 1$ to k, $V(\overline{y}_{st})$ is minimum if $n_i \alpha \frac{n_i S_i}{\sqrt{C_i}}$.

13. With usual notations prove that $V(\overline{y}_{sys}) = \frac{N-1}{N} \cdot S^2 - \frac{k(n-1)}{N} \cdot S^2_{wsy}$. Also compare $V(\overline{y}_{sys})$ with $V(\overline{y})_{SRSWOR}$.

(6×5=30)