Reg. No.

Choice Based Credit System IV Semester B.Sc. Degree Examination, September 2022 (2020-21 Batch Onwards) STATISTICS Statistical Inference – I

Time : 3 Hours

Instructions : 1) A single booklet containing 40 pages will be issued.2) No additional sheets will be issued.

PART – A

Answer any ten of the following :

- 1. a) Show that if T_n is unbiased for θ and $g(\theta)$ is a linear function of θ . Then $g(T_n)$ is unbiased for $g(\theta)$.
 - b) State the necessary and sufficient condition for consistency of an estimator.
 - c) State Fisher-Neyman criteria for sufficiency.
 - d) State any two properties of maximum likelihood estimators.
 - e) Obtain $100(1 \alpha)$ % confidence interval for the mean of a population based on large sample.
 - f) Define Type I and Type II errors.
 - g) State any two properties of likelihood ratio test procedure.
 - h) Briefly explain the procedure of testing ratio of variances of single normal populations with unknown means.

Max. Marks: 80

(10×2=20)

BSCSTC 281

BSCSTC 281

i) When do you say that a test procedure is unbiased?

- j) Briefly explain the procedure of testing ratio of variances of two normal populations with unknown means.
- k) What do you mean by size of a critical region ? Also explain the concept of power function.
- I) Mention any two applications of t-distribution in testing of hypothesis.

Answer any five of the following :

- 2. Let $X_1, X_2, ..., X_n$ be a random sample from U(0, θ). Show that $X_{(n)}$ is biased for θ . Find a function of $X_{(n)}$ which is unbiased for θ . Is $X_{(n)}$ asymptotically unbiased ?
- 3. For the density function $f(x, \theta) = \frac{\theta^{\alpha}}{|\alpha|} e^{-\theta x} x^{\alpha-1}$, x > 0, determine the M.L.E. of θ based on a random sample of size n. (α known).
- 4. Let X₁, X₂, ..., X_n be a random sample from beta distribution of first kind with parameters μ and 1. Find the M.L.E. of $\theta = \frac{\mu}{\mu + 1}$.
- 5. Construct $100(1 \alpha)$ % confidence interval for the variance of normal distribution with unknown mean.
- 6. Let $X_1, X_2, ..., X_n$ be a random sample of size n from N(μ, σ^2), σ^2 known. Derive the BCR of size α for testing $H_0: \mu = \mu_0$ against $H_1: \mu = \mu_1 (> \mu_0)$.
- 7. Derive maximum likelihood ratio test procedure for testing equality of variances of normal populations, with unknown mean.
- 8. Stating the assumptions clearly describe students t test for paired samples.
- 9. Write a note on Chi-square test for testing independence of attributes.

(5×6=30)

-3-

BSCSTC 281

 $(3 \times 10 = 30)$

PART – C

Answer any three of the following :

- 10. a) Explain the moment method of estimating the parameters.
 - b) Show that the sum of the items of a random sample of size n from an exponential distribution with p.d.f. $f(x, \theta) = \frac{1}{\theta}e^{-x/\theta}$, x > 0 is a sufficient statistic, for θ .
- 11. a) Explain Neyman Pearson Lemma.
 - b) Derive the most powerful test procedure for testing

$$H_{0}: f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2}, -\infty < x < \infty \text{ against } H_{1}: f(x) = \frac{1}{\pi} \frac{1}{1+x^{2}}, -\infty < x < \infty.$$

And find its power.

12. Derive the likelihood ratio test procedure for testing H_0 : $\sigma_1^2 = \sigma_2^2$ against

 H_1 : $\sigma_1^2 \neq \sigma_2^2$, where σ_1^2 and σ_2^2 are the variances of two normal populations with unknown means.

13. a) Two samples of sizes N_1 , N_2 have respectively frequencies f_1 , f_2 , ..., f_n under the same headings. Show that Chi-square for such a distribution is

equal to
$$\sum_{r=1}^{n} N_1 N_2 \left| \frac{\left(\frac{f_r}{N_1} - \frac{f_r'}{N_2}\right)^2}{f_r + f_r'} \right|$$
.

b) Write a note on Yates correction for continuity.

4

6

4

4

6