

I Semester M.Sc. Degree Examination, May 2022 INDUSTRIAL CHEMISTRY Inorganic Chemistry

Time: 3 Hours

Max. Marks: 70

Instructions: Answer any five questions from Part – A and any five questions from Part – B. Figures to the right indicate marks.

PART - A

1. Answer any five questions:

 $(2 \times 5 = 10)$

- a) Find out the number of geometrical isomers of the complex, $[Co(NO_2)_3(NH_3)_3]$
- b) How does charge of the metal ions influence the stability of complexes?
 - c) What is meant by the hapticity of a ligand? How is it designated?
 - d) The 17e species $Mn(CO)_5$ dimerizes forming $Mn_2(CO)_{10}$ but 17e species $V(CO)_6$ does not dimerize. Why ?
 - e) Depict the active site of alcohol dehydrogenase.
 - f) Which macrocycle is present in Vitamin B₁₂ ? How does it differ from porphyrin ?
 - g) How many symmetry elements does BF₃ have and what are they?
 - h) Find the symmetry product of the operation $\sigma_{xy}\times C_{2z}.$

PART - B

Answer any five full questions:

 $(5 \times 12 = 60)$

- a) Discuss carefully and concisely the splitting of d orbitals in the case of CrCO₆ and distribute the electrons in different sets of the d-orbitals.
 - b) Give the number of unpaired electrons in a strong and weak octahedral field for (i) Cr^{2+} (ii) Co^{2+} (iii) Fe^{3+} (iv) Pt^{4+} .
 - c) Calculate the magnetic moment for $[Ni(en)_3]^{2+}$ taking into account the fact that there is angular momentum contribution to the moment ($\Delta = 11,500 \text{ cm}^{-1}$ and $\lambda = -315 \text{ cm}^{-1}$). (4+4+4)

P.T.O.

ICH 401

- 3. a) Ligands such as Co, CN⁻ forms low spin complexes and all halides form high spin complexes: Explain using molecular orbital theory.
 - b) Explain splitting of d orbital energy levels, when transition metal ion is placed in the centre of a tetrahedral field and justify why $\Delta_{\rm t} < \Delta_{\rm 0}$.
 - c) Account for the magnetic moments of the complex, (Et₄N)₂, [NiCl₄] recorded at 80, 99 and 300 K, 3.25 3.43 3.89 B.M. respectively. (5+4+3)
- 4. a) Write a note on structure and bonding in metal carbonyls.
 - b) Explain the preparation, structure and bonding of metal-alkene complexes.
 - c) Check the stability of the following organometallic compounds.
 - i) ReH₉²⁻

ii)
$$[Co(\eta^5 - C_5H_5)_2]^+$$
 (4+4+4)

- 5. a) Write a note on insertion and deinsertion reactions in organometallic compounds.
 - b) Explain the structure and nature of bonding in metal η^3 -allyl complexes.
 - c) Describe the structure and bonding in Metal-Butadiene complexes. (4+4+4)
- 6. a) Write a note on structure and functions of Hemerythrin.
 - b) What are sulphur proteins? Explain the types.
 - c) Explain the terms cooperative effect and Bohr effect. What explanation is offered for the cooperative effect in Haemoglobin ? (4+4+4)
- 7. a) What is meant by poisoning of enzymes? Describe briefly the poisoning of enzyme catalysts. Discuss the mechanism which is adopted by the nature to counteract the poisoning of metal catalysts.
 - b) Identify the coordination environment of metal ions in carboxy peptidase and carbonic anhydrase and explain the role of these enzymes in biological oxidation.

- 8. a) Construct the character table for C_{3V} point group and generate reducible representation of NH_3 on the basis of vectors.
 - b) Classify the following molecules into appropriate point group listing their symmetry elements. (i) H₂O₂ (ii) Platin. (6+6)
- 9. a) Find the IR, Raman and total modes of vibrations in m-dichlorobenzene by using ${\rm C_{2v}}$ character table.

C _{2v}	E	C _{2z}	σ _{xz}	σ _{yz}		
A ₁	1	1	1	1	Z	x^2 , y^2 , z^2
A ₂	1	1	-1	-1	R _z	ху
B ₁	1	-1	1	-1	x, R _y	XZ
B ₂	-1-	-1	-1	1	y, R _x	yz

- b) Obtain the matrix representation for Cn(z) for rotation in anticlockwise direction along z-axis.
- c) Find out point groups for linear molecules using suitable examples. (5+4+3)