

I Semester M.Sc. Degree Examination, November/December 2019 INDUSTRIAL CHEMISTRY

Organic Chemistry - I

Time: 3 Hours]

[Max. Marks: 70

PART - A

Answer any five questions:

 $(5 \times 2 = 10)$

- 1. (a) Write any two methods of generation of nitrenes.
 - (b) Comment on stability and reactivity of phosphorus ylide by giving a suitable example.
 - (c) Why following compound (i) react with water 600 times faster than compound (ii)?

(d) Explain why following compounds is unreactive under both $S_{\rm N}1$ and $S_{\rm N}2$ reactions.

(ii)
$$CH_2 = CH - CI$$

- (e) What is reed reaction? Give one example.
- (f) How aromatic nucleophilic substitution reaction taking place by using Benzyne intermediate? Give an example.

1

P.T.O.

(g) Give the R/S designation for each of the stereoisomers of 1,3-dibromo-2-methylbutane.

(i)
$$H \longrightarrow CH_3$$
 (ii) $H_3C \longrightarrow H$ (iii) $H \longrightarrow CH_3$ (iv) $H_3C \longrightarrow H$ $H \longrightarrow Br$ CH_3 CH_3 CH_3 CH_3

- (h) Write the structure of following compounds.
 - (i) (S, S) Chiraphos
 - (ii) Swainosonine
 - (iii) IPC2BH

(iv)

(iv) (R, R) DIPAMP.

PART - B

Answer any five full questions:

 $(5 \times 12 = 60)$

- 2. (a) What are carbenes? How they are generated? Give two reactions involving carbenes as intermediate.
 - (b) Compare acidity and basicity of the following compounds and justify your answer.

COOH COOH COOH
$$CH_3$$
(i) (ii) (iii) (iiii)
$$CH_3$$

$$CH_4$$

$$CH_3$$

$$CH_4$$

$$CH_3$$

$$CH_4$$

$$CH_4$$

$$CH_5$$

(v)

(c) Write a short note on Hammett equations and its applications.

(vi)

(4 + 4 + 4)

 (a) Describe the primary and secondary kinetic isotopic effect with examples.

- (b) With suitable example explain, how the structure of organic compounds effect the strength of organic acid.
- (c) How do you differentiate ylides and enamines? Give one reaction involving ylides and enamine as intermediate. (4 + 4 + 4)
- (a) Discuss the effect of leaving group and solvent polarity on reactivity in aliphatic electrophilic substitution reaction.
 - (b) How the following tools are useful for the determination of mechanism of reaction?
 - (i) Isotopic labeling
 - (ii) Cross-over experiment.
 - (c) Predict the product and propose suitable mechanism for the following reaction:

$$H_3C$$
 $2NaNH_2$ 7 $NaNH_2$ 7 HNO_2 7 $2CH_3Br$

5. (a) Predict the products obtained from S_N1 and S_N2 reaction condition in the following cyclic reaction. Justify your answer.

3

$$H_{N}$$
 $H_{3}C$
 $H_$

$$H_{3}C$$
Br
 $H_{2}O$
 $S_{N}1 \text{ Condition}$?

- How do you differentiate $S_{\text{E}}2$ and $S_{\text{E}}i$ aliphatic electrophilic substitution reaction explain with examples.
- Anti-tosylate compound (c)
 - on acetolysis react 10^{11} times faster than its saturated (i)
 - (ii) Justify your answer.

(4 + 4 + 4)

6. Predict the product and discuss the mechanism in the following (a) reactions:

(i)
$$\xrightarrow{NaNO_2}$$
 ? \xrightarrow{CuCl} ? \xrightarrow{HCl} $\xrightarrow{0-5^{\circ}C}$?

(ii)
$$\xrightarrow{\text{H O}} \xrightarrow{\text{AIBN}} ?$$

$$\text{Tributyltin hydride}$$

(b)
$$CH_3$$
 $O \\ + Br - CH - C - OCH_3$? $O \\ - O \\ -$