\square

I Semester M.Sc. Degree Examination, May 2022 INDUSTRIAL CHEMISTRY Physical Chemistry

Time : 3 Hours
Max. Marks: 70

Instructions : 1) Answer any five questions from Part-A and any five questions from Part - B.

2) Figures to the right indicate marks.
PART - A
1. Answer any five questions :
a) Calculate the de Broglie wavelength of an electron travelling at $1 / 10^{m \mathrm{~m}}$ the speed of light. ($\mathrm{m}_{\mathrm{e}}=9.1 \times 10^{-31} \mathrm{~kg}, \mathrm{~h}=6.626 \times 10^{-34} \mathrm{Js}$)
b) Normalize the wave function $\psi(x)=A \sin \frac{n \pi x}{L} ; 0<x<L$.
c) The free energy change for a process at $25^{\circ} \mathrm{C}$ is -85.77 kJ and at $35^{\circ} \mathrm{C}$ is -83.68 kJ . Calculate the change in enthalpy for the process at 303 K .
d) Give any two comparisons of kinetics of hydrogen-halogen reaction
e) Corrosion can be considered as the reverse process of metal extraction. Justify this statement.
f) Why are N - and S - containing organic compounds employed as organic corrosion inhibitors?
g) What is Kolbe's electro-synthesis ?
h) Explain the principle of electro inorganic synthesis of chlorate
PART - B

Answer any five full questions :
$(5 \times 12=60)$
2. a) Obtain the expressions for energy levels and wavefunctions for a particle in one-dimensional Box.
b) State the postulates of quantum mechanics.
c) Discuss Einstein's explanation of photoelectric effect.
3. a) Explain the concept of degeneracy using particle in a three-dimensional box problem.
b) Discuss the application of Schrodinger equation to a harmonic oscillator.
c) Set up operators for x, y and z components of angular momentum.
4. a) Consider the two consecutive first-order reactions
$A \xrightarrow{k_{1}} B, \quad B \xrightarrow{k_{2}} C$.
Integrate the rate equations to obtain expressions for $[\mathrm{A}],[\mathrm{B}]$ and $[\mathrm{C}]$
as functions of time. If $k_{1}=1 \mathrm{~s}^{-1}$, sketch each of these functions for the cases $\mathrm{k}_{2} / \mathrm{k}_{1}=0.1,1$ and 10 . Assume that only A is present initially with a concentration C_{0}.
b) What is chemical potential ? Give its physical significance.
c) One mole of solid gold is raised from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ at constant pressure. $\mathrm{Cp}(\mathrm{J} / \mathrm{K} \mathrm{mol})=23.7+0.00519 \mathrm{~T}$. Calculate $\Delta \mathrm{S}$ for the transformation.
5. a) Derive the expression of Gibbs free energy of mixing.
b) Explain the upper and lower explosion limits in branched chain reaction.
c) Derive Kirchhoffs equation relating the variation of enthalpy of a reaction with temperature.
6. a) Outline the principle involved in electrophoretic coating. What are its applications ?
b) Give examples for pigments and drying oils. What are their functions?
c) Explain the importance of material selection and design in the control of corrosion.
7. a) Explain cathodic and anodic protection. Mention two of their applications.
b) Outline the importance of metal finishing and processing.
8. a) Describe the mechanism of industrial production of potassium hydroxide.
b) Explain the electrosynthesis of adiponitrile.
c) Outline the electro-inorganic synthesis of fluorine.
9. a) Discuss in detail the various costing parameters and electrolysis parameters employed in deciding the performance of a electrochemical cell.
b) Explain with relevant reactions the electro-reduction and oxidation of hydrocarbons.

