Reg. No.

I Semester M.Sc. Degree Examination, May 2022 INDUSTRIAL CHEMISTRY Physical Chemistry

Time: 3 Hours

Instructions : 1) Answer any five questions from Part – A and any five questions from Part – B.

2) Figures to the **right** indicate marks.

PART – A

- 1. Answer any five questions :
 - a) Calculate the de Broglie wavelength of an electron travelling at $1/10^{th}$ the speed of light. (m_e = 9.1×10^{-31} kg, h = 6.626×10^{-34} Js)
 - b) Normalize the wave function $\psi(x) = A \sin \frac{n \pi x}{L}$; 0 < x < L.
 - c) The free energy change for a process at 25°C is 85.77 kJ and at 35°C is 83.68 kJ. Calculate the change in enthalpy for the process at 303 K.
 - d) Give any two comparisons of kinetics of hydrogen-halogen reaction.
 - e) Corrosion can be considered as the reverse process of metal extraction. Justify this statement.
 - f) Why are N- and S- containing organic compounds employed as organic corrosion inhibitors ?
 - g) What is Kolbe's electro-synthesis ?
 - h) Explain the principle of electro inorganic synthesis of chlorate.

ICH 403

Max. Marks: 70

 $(5 \times 2 = 10)$

ICH 403

PART – B

Answer any five full questions :

- 2. a) Obtain the expressions for energy levels and wavefunctions for a particle in one-dimensional Box.
 - b) State the postulates of quantum mechanics.
 - c) Discuss Einstein's explanation of photoelectric effect. (5+4+3)
- 3. a) Explain the concept of degeneracy using particle in a three-dimensional box problem.
 - b) Discuss the application of Schrodinger equation to a harmonic oscillator.
 - c) Set up operators for x, y and z components of angular momentum. (4+5+3)
- 4. a) Consider the two consecutive first-order reactions

 $A \xrightarrow{\quad k_1 \quad} B, \quad B \xrightarrow{\quad k_2 \quad} C.$

Integrate the rate equations to obtain expressions for [A], [B] and [C] as functions of time. If $k_1 = 1 \text{ s}^{-1}$, sketch each of these functions for the cases $k_2/k_1 = 0.1$, 1 and 10. Assume that only A is present initially with a concentration c_0 .

- b) What is chemical potential ? Give its physical significance.
- c) One mole of solid gold is raised from 25°C to 100°C at constant pressure. Cp (J/K mol) = 23.7 + 0.00519T. Calculate Δ S for the transformation. (6+3+3)
- 5. a) Derive the expression of Gibbs free energy of mixing.
 - b) Explain the upper and lower explosion limits in branched chain reaction.
 - c) Derive Kirchhoffs equation relating the variation of enthalpy of a reaction with temperature. (4+4+4)

(5×12=60)

-3-

- 6. a) Outline the principle involved in electrophoretic coating. What are its applications ?
 - b) Give examples for pigments and drying oils. What are their functions ?
 - c) Explain the importance of material selection and design in the control of corrosion. (4+4+4)
- 7. a) Explain cathodic and anodic protection. Mention two of their applications.
 - b) Outline the importance of metal finishing and processing. (6+6)
- 8. a) Describe the mechanism of industrial production of potassium hydroxide.
 - b) Explain the electrosynthesis of adiponitrile.
 - c) Outline the electro-inorganic synthesis of fluorine. (4+4+4)
- 9. a) Discuss in detail the various costing parameters and electrolysis parameters employed in deciding the performance of a electrochemical cell.
 - b) Explain with relevant reactions the electro-reduction and oxidation of hydrocarbons. (6+6)