Reg. No.

III Semester M.Sc. Examination, December 2018 INDUSTRIAL CHEMISTRY Spectroscopic Techniques

Time: 3 Hours

Max, Marks: 70

ICH 501

Answer any five questions from Part - A and any five Note : questions from Part - B.

PART – A

 $(5 \times 2 = 10)$

- 1. a) How to distinguish between spherical, symmetric and asymmetric top molecules ?
 - b) The rotational constant for H³⁵ CI is observed at 10.5909 cm⁻¹. What is the value of B for H37 CI ?
 - c) Reason out why symmetric stretching of CO₂ is IR inactive but Raman
 - d) How you distinguish between $CH_3 O CH_3$ and $CH_3 CH_3$ using IR spectroscopy ?
 - e) What is the significance of blank solution in UV-V is spectroscopy?
 - f) Calculate the chemical shift value of whose frequency of a 1H nucleus is 1250 Hz on 400 MHz spectrometer. What will its frequency in 60 MHz spectrometer ?

g) Calculate number ¹³C of signals for toluene and 2-chlorotoluene.

h) How to distinguish the presence of chlorine and bromine in a molecule through mass spectrometry?

PART - B

2. a) Derive an expression for the rotational energy levels of diatomic molecule

based upon rigid-rotor model. b) Sketch the rotational spectrum for ¹²C ¹⁶O and ¹³C ¹⁶O molecules. (6+6)

P.T.O.

ICH 501

- a) "Rotational spectrum of OCS molecules enables to calculate bond lengths" Justify the statement.
 - b) Derive an expression for the energy levels of anharmonic oscillation.
 - c) Sketch vibration-rotation spectrum with an emphasis to PQR branches.
- 4. a) Illustrate with examples how to distinguish between amides and esters using IR spectroscopy.
 - b) How intermolecular and intramolecular hydrogen bonding can be distinguished by IR spectroscopy ?
 - c) How do you distinguish between using IR spectroscopy ?

$$CH_3 - C - O CH_3 \text{ and } CH_3 - C - NO_2$$
 (4+4+4)

- 5. a) Discuss different types of electronic transitions and how they affect $\lambda \text{max}.$
 - b) Write a notes on :
 - i) Frank Condon principle
 - ii) Wood word Fisher rule.
- 6. a) Discuss about the relaxation processes of a nucleus revert back to α state.
 - b) Why TMS used as an internal standard in 'H NMR experiments ?
 - c) How FTNMR technique offers itself as a advantage over CWNMR ? (4+4+4)
- 7. a) "In [18] annulene the peripheral protons appear δ 8.9 ppm where as inner protons at δ 1.8 ppm" Justify the statement.
 - b) Predict the ¹HNMR spectrum of following compounds :
 - i) Acetaldehyde
 - ii) Acetamide
 - iii) Ethylacetate
 - iv) Benzyl alcohol
 - c) Distinguish between AX and AMX spectral patterns with justifications. (4+4+4)

(6+6)

(4+4+4)

ICH 501

- 8. a) Discuss how vicinal protons coupling constants vary based on Karplus equation.
 - b) Explain the technique and use of spin decoupling.
 - c) Distinguish these compounds on the basis of ¹³C NMR :

ii) CH₃-O-CH₂CH₂CH₃

- (4+4+4)
- 9. a) Illustrate with example how double irradiation technique helps in understanding NOE.
 - b) Explain with examples the fragmentation process in mass spectroscopy.
 - c) Write the feasible structures for these ions :
 - i) 1-Methyl cyclohexanone : m/z, 96, 81, 68, 67
 - ii) 4-Heptanone : m/z, 114, 86, 71, 58, 43, 41. (4+4+4)
- 10. a) Discuss with examples McLaferty rearrangement.
 - b) The organic compound has following spectral data with mol formula C₉H₁₀O₂ IR v_{max} = 1745 cm⁻¹ (S) 1225 cm⁻¹ (br-S), 749 cm⁻¹(S), 697 cm⁻¹ (S) UV = λmax at 268, 264, 262, 257 nm. ¹H NMR δ ppm : 1.96 (3H, s); 5.00 (2H, s) 7.22 (5H, s). Deduce the structure of the compound.
 c) An organic compound containing C, H, N and halogen gave following spectral Data UV λmax : 240 nm IR v_{max} = 3400, 3300, 3200 (w), 2900, 1620, 1500, 1380, 880, 820 cm⁻¹

IH v_{max} = 3400, 3500, 3200 (W), 2000, 10200, 1020, 1020, 1020, 1020, 10