Reg. No. \square
ICH 501

III Semester M.Sc. Degree Examination, November/December 2019
 INDUSTRIAL CHEMISTRY
 Spectroscopic Techniques

Time : 3 Hours]
[Max. Marks : 70

Instructions :

(i) Answer any five subdivisions from Part A and any five questions from Part B.
(ii) Figures to the right indicate marks.
PART - A

Answer any five questions :

1. (a) Sketch the Morse PE diagram for an anharmonic oscillator.
(b) State and explain the rule of mutual exclusion.
(c) Write the mathematical expression for the Beer-Lambert law and elaborate the terms.
(d) How do electron withdrawing (-I) groups shift the position of the carbonyl frequency in IR spectroscopy.
(e) Predict the structure of following molecule given data:

Molecular formula :
$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{No}:{ }^{1} \mathrm{HNMR}(400 \mathrm{MHz}), 8 \mathrm{ppm}: 2.22(\mathrm{~s}, 3 \mathrm{H}) ; 2.81(\mathrm{~s}, 3 \mathrm{H})$;
6.71 ($\left.\mathrm{bs}_{1} 1 \mathrm{H}\right)$

ICH 501

(f) Sketch the Karplus curve in ${ }^{1} \mathrm{H}$ NMR spectroscopy and highlight its importance.
(g) Highlight the significance of the base peak in mass spectrometry.
(h) Aromatic hydrocarbons normally exhibit their molecular ion peak as the base peak. Why?
PART - B

Answer any five full questions :
2. (a) With suitable example, discuss the effect of isotopic substitution in microwave spectroscopy.
(b) Using Hooke's law, obtain an expression for the frequency of vibration for a diatomic molecule.
(c) Outline the quantum theory of Raman effect.
$(4+4+4)$
3. (a) Discuss the rotational spectra of polyatomic molecules with special reference to symmetric and asymmetric top molecules.
(b) Give the quantum mechanical basis of the Frank-Codon principle.
(c) How does the breakdown of the Born-Oppenheimer approximation effect the P and R branch line of the vibration-rotation spectrum of a diatomic molecule.
$(4+4+4)$
4. (a) With the help of a neat diagram, discus solvent effects prevalent in effecting the position of bands UV-visible spectroscopy.
(b) Write an account of the Woodward-Fieser rules to predict the $\lambda_{\text {max }}$ of conjugated dienes.
(c) With suitable examples, illustrate how inter and intra molecular H-bonding may be differentiated by IR spectroscopy.
$(4+4+4)$
5. (a) What are Fermi-resonance bands? Illustrate the usefulness of the bands in distinguishing aldehydes from ketons.
(b) How are the following compounds distinguished by IR spectroscopy?
(i) Phenol
(ii) Aniline and
(iii) Nitrobenzene
(c) Predict the UV $\lambda_{\text {max }}$ for the following aromatics:
(i) 2-hydroxy benzaldehyde
(ii) 2-hydroxy benzoic acid and
(iii) 2-hydroxy acetophenone.
$(4+4+4)$
6. (a) Briefly outline the principle and working of an FT-NMR instrument.
(b) State and explain the first order splitting rules of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopy.
(c) Outline Pople's notation for spin-spin interactions. (4+4+4)
7. (a) Describe any two methods for the simplification of complex ${ }^{1} \mathrm{H}$-NMR spectra.
(b) Write an account on nuclear Overhauser effect.
(c) Discuss the importance of 2D-NMR spectroscopy. (4+4+4)
8. (a) Describe any two methods for production of molecular ions of organic molecules.
(b) Sketch the fragmentation pattern of (i) cyclohexene and (ii) 2-heptanone.
(c) How are mono-chloro and mono-bromo-alkanes distinguished by EI-MS?

ICH 501

9. (a) Citing suitable examples, state and explain the nitrogen rule.
(b) Write short notes on:
(i) α-cleavage and
(ii). McLafferty rearrangement in the mass spectral fragmentations of carbonyl compounds.
(c) Deduce the structure of an organic compound from the following data and assign the values :

Molecular formula : $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}$
$\mathrm{UV} \lambda_{\text {max }}: 293 \mathrm{~nm}$
IR: 3460, 3381, 2869, 2951, 2832, 1513, 1241 and $1045 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR : $\delta: 6.66(\mathrm{~m}, 4 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$ and $3.45(\mathrm{~s}, 2 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR : $\delta: 152.7,140: 2,116.3,114.6$ and 55.7
MS : m/e (relative intensity) : 123 (100%), 108 and $80 .(4+\mathbf{4 + 4)}$

