Reg. No.

CHH/ACH/OCH/CAH 451

Second Semester M.Sc. Degree Examination, Sept./Oct. 2022 (Freshers and Repeaters) (CBCS – 2016-17 Syllabus) CHEMISTRY/APPLIED CHEMISTRY/ORGANIC CHEMISTRY/ANALYTICAL CHEMISTRY Advanced Inorganic Chemistry

Time : 3 Hours

Max. Marks : 70

Note: i) Answer Part – A and four questions from Part – B. ii) Figures to the **right** indicate marks.

PART – A

- 1. Answer the following sub-divisions :
 - a) Define improper axis of symmetry (S_n) . Mention the number of operations generated when n = 3 in S_n .
 - b) What is a point group ? Identify the point group of trans-[PECl₂Br₂] or staggered ethane.
 - c) What is an irreducible representation ? How many irreducible representations are possible in C_{2h} point group ?
 - d) Which among the complexes $[CuL_6]^{2+}$ and $[CrL_6]^{3+}$ undergo Jahn Teller distortion ? Why ?
 - e) Write the structures of all possible isomers of [Co(en)₂Cl₂]⁺. Which of them is optically active ?
 - f) The Δ values (in cm⁻¹) of the octahedral complexes, $[Co(NH_3)_6]^{3+}$, $[Co(en)_3]^{3+}$, $[Rh(en)_3]^{3+}$ and $[Ir(en)_3]^{3+}$ are 22,900, 23,200, 34,600 and 41,400 respectively. Justify this observation.
 - g) Carbon may be used to reduce any metal oxide above 710°C. Why ?
 - h) The trivalent oxidation state is common for lanthanides but Ce⁴⁺, Tb⁴⁺ and Eu²⁺ are quite stable. Give reasons.
 - i) Why actinides show variable valencies ?

 $(9 \times 2 = 18)$

CHH/ACH/OCH/CAH 451

PART – B

Answer any four full questions :

(4×13=52)

- 2. a) What is group multiplication table ? Construct the group multiplication table for C_{3v} point group.
 - b) Derive matrix representation for reflection operation of a vector in YZ-plane.
 - c) Explain the mathematical rules for the matrix representation of a point group with suitable examples. (5+4+4=13)
- 3. a) Illustrate the rules followed in assigning the Mulliken's symbol for irreducible representations.
 - b) Explain how character table could be used in identifying the type of hybridization in NH₃ molecule.
 - c) Identify the subgroups present in D_{2h} and C_{2h} point groups. Give the order of each group. (5+4+4=13)
- 4. a) Derive the possible sets of 'styx' numbers and draw the most reasonable structures of B_5H_9 and B_5H_{11} .
 - b) Outline the synthesis of α -C₂B₁₀H₁₂. Draw the structures of its possible isomers and explain their properties.
 - c) Explain the method of preparation of S_4N_4 . Draw its structure and explain geometry in terms of S-S and S-N bond distances. (5+4+4=13)
- 5. a) How does CFT successfully explain the d-orbitals splitting in an octahedral and tetrahedral ligand fields ? Mention its limitations.
 - b) Give examples for complexes of coordination number five and seven, sketch the possible geometries.
 - c) Describe the structure and bonding in $\operatorname{Re}_{2}\operatorname{Cl}_{8}^{2-}$. (5+4+4=13)
- 6. a) Describe the different chemical methods adapted for the reduction of oxide ores with suitable examples.
 - b) Discuss the salient features of Ellingham diagram.
 - c) What are NMR shift reagents. Give examples. (5+4+4=13)
- 7. a) What is lanthanide contraction ? How does it affect the chemical behaviour of Zr/Hf, Nb/Ta and Mo/W ?
 - b) Explain in details the chemistry of halides and oxides of nickel group elements.
 - c) Discuss the general principles involved in ion-exchange separation of lanthanide ions. (5+4+4=13)