Reg. No.

CHH/ACH/OCH/CAH 453

II Semester M.Sc. Degree Examination, September/October 2022 (CBCS – 2016-17 Syllabus) (Freshers and Repeaters) CHEMISTRY/APPLIED CHEMISTRY/ORGANIC CHEMISTRY/ANALYTICAL CHEMISTRY Advanced Physical Chemistry

Time : 3 Hours

Instructions : 1) Answer Part – A and any four questions from Part – B.
2) Figures to the right indicate marks.

PART – A

1. Answer **all** sub-divisions.

- a) Explain the significance of Van't Hoff reaction isochore.
- b) Write any two applications of Gibbs Helmholtz equation.
- c) State and explain Lewis Randall rule.
- d) Differentiate between Bosons and Fermions.
- e) Define electronic partition function. Give its significance.
- f) Write the relationship between force and flux with suitable example.
- g) State the conditions for orthogonality and normalization of wave functions.
- h) Set up the kinetic energy operator for a particle moving in one direction.
- i) Using molecular orbital theory, calculate the bond order of O_2 .

PART – B

Answer any four full questions.

2.	a)	By deriving a suitable mathematical expression, explain the variation of chemical potential with temperature.	5
	b)	Derive any two Maxwell's relations.	4
	c)	Explain the intercept method for the determination of partial molar volume.	4

Max. Marks : 70

(9×2=18)

(4×13=52)

CHH/ACH/OCH/CAH 453

3.	a)	State Nernst heat theorem and compare it with third law of thermodynamics. Write the applications of the theorem.	6
	b)	Describe the variation of fugacity with pressure and temperature.	4
	c)	Explain the entropy change for the isothermal expansion of an ideal gas with suitable equation.	3
4.	a)	Derive Sackur-Tetrode equation for a monoatomic gas.	6
	b)	Calculate the translational partition function of benzene in a volume of $1m^3$ at 298 K. (Given : m = 1.295×10^{-25} kg mol ⁻¹ , k = 1.38×10^{-23} JK ⁻¹ , h = 6.626×10^{-34} Js, R = 8.314 JK ⁻¹ mol ⁻¹).	3
	c)	Describe the irreversible thermodynamics of biological systems.	4
5.	a)	Outline Einstein theory of heat capacity of solids.	8
	b)	Give a comparative account of different statistical distributions.	5
6.	a)	Give a comparative account of valence bond and molecular orbital theories.	6
	b)	Construct quantum mechanical operator for angular momentum.	4
	c)	Define eigen functions and eigen values. Explain their physical significance in quantum mechanics.	3
7.	a)	Obtain and solve Schrodinger equation for a particle in three dimensional box.	8
	b)	Discuss the applications of Huckel molecular orbital theory to ethylene molecule.	5