II Semester M.Sc. Degree Examination, Sept./Oct. 2022 (Freshers and Repeaters) (CBCS - 2016-17 Syllabus) CHEMISTRY/APPLIED CHEMISTRY/ORGANIC CHEMISTRY/ ANALYTICAL CHEMISTRY **Organic Spectroscopic Techniques**

Time: 3 Hours

Instructions : 1) Answer Part – **A** and **any four full** guestions from Part – **B**. 2) Figures to the **right** indicate marks.

PART – A

- 1. Answer all the following sub-divisions :
 - a) Calculate the λ_{max} for the following compounds :

- b) Benzene is colourless while nitrobenzene is pale yellow and p-nitroaniline is dark yellow. Justify.
- c) How will you distinguish between the following compounds using IR spectra?

- d) What is multiplet skewing ? Give its importance.
- e) "Even when CDCl₃ is used as a solvent, there appears a peak at 7.26 ppm in NMR spectra."Comment on this.
- f) What are the advantages of FT-NMR over CW NMR Instrument.
- g) What are the factors affecting the fragmentation in Mass spectra?
- h) What is McLefferty rearrangement? Give an example.
- i) Distinguish between 'molecular ion peak' and 'base peak' with a suitable example.

 $(9 \times 2 = 18)$

Max. Marks: 70

PART – B

-2-

Answer any four full questions :

- 2. a) Discuss the factors which affect the positions of UV bands.
 - b) What is finger print region in IR spectra ? Explain its use in structural elucidation of organic compounds.
 - c) Explain Woodward-Fieser rules for predicting λ_{max} of α , β -unsaturated systems and predict the λ_{max} for the following :

(4+3+6=13)

- 3. a) Discuss the effect of hydrogen bonding and solvents on IR frequencies.
 - b) How do you confirm the following conversion using FTIR :

1 - (4-hydroxyphenyl) ethanone $\rightarrow 4$ -hydroxylphenyl acetate.

- c) With suitable examples, discuss the effect of various substitutions on the vibrational frequencies of carbonyl group. (4+4+5=13)
- 4. a) Discuss the applications of NOE with suitable examples.
 - b) Draw the ¹H-NMR (spin multiplicities) and ¹³C-NMR spectra of :

c) Discuss the magnetic anisotropic effect in molecules containing π -bonds.

(4+5+4=13)

(4×13=52)

-3-

5. a) Sketch and explain the ¹H-NMR and ¹³C-NMR spectra for the following molecules :

- b) Write a note on the following :
 - i) Karplus curve.
 - ii) Spin decoupling technique.

- Me

- 6. a) Discuss the fragmentation modes for the following with suitable examples :
 - i) Esters
 - ii) Phenols.
 - b) How will you distinguish 1°, 2° and 3° alcohols on the basis of mass spectrometry ?
 - c) Write a note on HRMS analysis.
- 7. a) Discuss the following ionization methods :
 - i) Fast atom bombardment ionization.
 - ii) Chemical ionization.
 - b) What is meta stable ion ? Discuss its formation in toluene.
 - c) Elucidate the possible structure of the compound based on following data :

Mol. Formula : C₅H₉BrO ¹H-NMR : δ1.17(d, 6H), 3.02(m, 1H), 4.10 (s,2H) ¹³C-NMR : δ17, 37, 39, 210 Mass : m/z 166 (M+2) (7+6=13)

(6+3+4=13)

(6+3+4=13)