P.T.O.

Second Semester M.Sc. Degree Examination, September/October 2022 MEDICAL PHYSICS **Radiation Dosimetry and Standardization**

Time: 3 Hours

Instructions: 1) Number the answers properly.

PART – I

Answer any five of the following :

- 1. Define exposure and one Roentgen.
- 2. Define RBE and LET.
- 3. Define charge particle equilibrium and types.
- 4. Mention the sources of neutron in radiotherapy and classify various neutrons.
- 5. a) What is 4π counting ?
 - b) Write about extrapolation chamber.
- 6. Define free radicals and G-value.

PART – II

(5×10=50) Answer **all** the **five** guestions following internal choice :

- 7. a) i) Explain in detail about biological and effective half-life.
 - ii) Define KERMA and absorbed dose. Derive the relation between the two under CPE. (5+5)

OR

- b) i) Define RAD and REM and state their units.
 - ii) Write about mass energy transfer and mass energy absorption coefficients. (5+5)

MPH 452

Max. Marks: 70

 $(5 \times 4 = 20)$

²⁾ Give illustrations wherever necessary.

	MPH 452	MF
Brief about Bragg-Gray and Spencer Attix cavity theories. Write about use of Quality Audit in reference and non-reference conditions. (5+5)	8. a) i) ii)	8
OR		
Give the general definition of $N_{D, W}$, K_{Pol} , K_{Q, Q_0} and K_Q in TRS 398. Write about standardization of brachytherapy sources. (6+4)	b) i) ii)	
Explain in detail about various standards of neutron dosimetry. Write a short note on neutron spectrometry. (6+4)	9. a) i) ii)	9
OR		
Define neutron dosimetry. Write about CR-39 dosimetry.	b) i) ii)	
Brief the mechanism of neutron survey meters. (3+4+3)	iii)	
plain about standardization of beta emitters and electron capture nuclides h proportional, GM and scintillation counters. 10	10. a) Ex wi	10
OR		
Brief about windowless counting of liquid samples. Write about Re-entrant ionization chamber method counting. (5+5)	b) i) ii)	
Write in detail about radiation chemistry of water and aqueous solutions. Describe the effects of radiation on polymers and their applications in dosimetry. (5+5)	11. a) i) ii)	11
OR		
Define molar absorption coefficient. Write in detail about Frick dosimeter.	b) i) ii)	
Write the applications of chemical dosimeters in Radiotherapy. (2+4+4)	iii)	

_