Reg. No. \square
MSH 451

II Semester M.Sc. Examination, Sept./Oct. 2022
 (CBCS)
 MATERIALS SCIENCE
 Quantum Mechanics - I

Time : 3 Hours
Max. Marks : 70

Instructions : 1) Scientific calculator may be allowed.
 2) Answer all questions.

1. a) Define expectation value of an operator. State and prove Ehrenfest's theorem.
b) Show that the expectation value of energy for a particle in a square box of side L is equal to $\hbar \omega$.

OR
2. Set up the Schrodinger equation for a particle in a one-dimensional potential well of finite depth and obtain the energy spectrum.
3. a) Write the Schrodinger equation for hydrogen atom in spherical polar coordinates.
b) Solve the radial part and show that the maximum probability of finding the electron is at a distance equal to the first Bohr radius.
OR
4. Discuss the motion of 1-dimensional simple harmonic oscillator and determine the energy eigenvalue spectrum. Write down the first four wave functions. Compare the results with classical results.
5. a) Show that the coordinate and momentum representations are Fourier transforms of each other.
b) Define Bra, Ket vectors. Represent inner product using Bra and Ket vectors.

OR

6. Discuss the motion of a simple harmonic oscillator using matrix mechanics. Arrive at the matrices for creation, annihilation, number, position, momentum and Hamiltonian operators.

MSH 451

7. Answer all the following questions :
($2 \times 5=10$)
a) Find out the de Broglie wavelength of an electron accelerated by a potential of 600 volts.
b) What are the canonically conjugate variables ?
c) What type of operators are used for representing physical variables ? Why ?
d) Distinguish between Schrodinger and Heisenberg pictures.
e) If operators, a and a^{+}act on the ground state $\mid 0>$ of a harmonic oscillator, what do you expect?
