Reg. No. **MSH 451**

II Semester M.Sc. Examination, Sept./Oct. 2022 (CBCS) MATERIALS SCIENCE Quantum Mechanics – I

Time : 3 Hours

Max. Marks : 70

Instructions : 1) Scientific calculator may be **allowed**. 2) Answer **all** questions.

- 1. a) Define expectation value of an operator. State and prove Ehrenfest's theorem.
 - b) Show that the expectation value of energy for a particle in a square box of side L is equal to $\hbar \omega$. (14+6)

OR

- Set up the Schrodinger equation for a particle in a one-dimensional potential well of finite depth and obtain the energy spectrum.
 20
- 3. a) Write the Schrodinger equation for hydrogen atom in spherical polar coordinates.
 - b) Solve the radial part and show that the maximum probability of finding the electron is at a distance equal to the first Bohr radius. (4+16)

OR

- 4. Discuss the motion of 1-dimensional simple harmonic oscillator and determine the energy eigenvalue spectrum. Write down the first four wave functions. Compare the results with classical results.
 20
- 5. a) Show that the coordinate and momentum representations are Fourier transforms of each other.
 - b) Define Bra, Ket vectors. Represent inner product using Bra and Ket vectors. (14+6)

OR

 Discuss the motion of a simple harmonic oscillator using matrix mechanics. Arrive at the matrices for creation, annihilation, number, position, momentum and Hamiltonian operators.
 20

MSH 451

- 7. Answer **all** the following questions :
 - a) Find out the de Broglie wavelength of an electron accelerated by a potential of 600 volts.
 - b) What are the canonically conjugate variables ?
 - c) What type of operators are used for representing physical variables ? Why ?
 - d) Distinguish between Schrodinger and Heisenberg pictures.
 - e) If operators, a and a⁺ act on the ground state |0> of a harmonic oscillator, what do you expect ?

(2×5=10)