Reg. No.									
----------	--	--	--	--	--	--	--	--	--

MTH 452

Max. Marks: 70

II Semester M.Sc. Degree Examination, Sept./Oct. 2022 MATHEMATICS Algebra – II (CBCS – New Syllabus)

Time: 3 Hours

- Notes : 1) Answer any five full questions.
 - 2) No additional sheets will be provided for answering.
 - 3) **Use** of scientific calculator is permitted.
- 1. a) Let D be an integral domain. For a, $b \in D$, prove or disprove that :
 - i) a divides b in D if and only if $\langle a \rangle \subseteq \langle b \rangle$.
 - ii) a is irreducible if and only if $\langle a \rangle$ is a maximal ideal in D.
 - iii) $\langle a \rangle$ and $\langle b \rangle$ are equal if and only if a and b are associates in D.
 - b) Define a Euclidean domain and a principal ideal domain. Prove that every Euclidean domain is a principal ideal domain.
 - c) Let a, b be elements of a principal ideal domain R, not both zero. Prove that greatest common divisor of a and b exists in R and it is unique up to associates.
 (6+4+4)
- a) Let D be an integral domain. Then prove that the factoring into irreducible terminates in D if and only if D does not contain infinite strictly increasing chain (a₁) ⊈ (a₂) ⊈ (a₃) ⊈ ... of principal ideals.
 - b) Prove that, the product of any two primitive polynomials is primitive.
 - c) Find all irreducible polynomials of degree less than 4 in $\mathbb{Z}_{2}[x]$. (5+5+4)
- a) Let f be an integer polynomial with positive leading coefficient. Then prove that f is irreducible in Z[x] if and only if it is either a prime integer or a primitive polynomial that is irreducible in Q[x].
 - b) Let α be Gauss prime and $\overline{\alpha}$ be its complex conjugate. Then prove that $\alpha \overline{\alpha}$ is either a prime integer or square of a prime integer.
 - c) Factor 6 + 9i into primes in $\mathbb{Z}[i]$.

(5+6+3)

- MTH 452
 - 4. a) Prove or disprove the following :
 - i) Every finite extension is an algebraic extension.
 - ii) Every algebraic extension is a finite extension.
 - b) If L is a finite extension of K and K is a finite extension of F, then prove that L is a finite extension of F.
 - c) Let K | F be a field extension and $\alpha \in K$. Then prove that α is algebraic over F, if and only if F[α] = F(α). (6+4+4)
 - 5. a) Show that trisecting an angle is impossible using Ruler and Compass alone.
 - b) If p is a prime number and a regular p-gon can be constructed by using ruler and compass, then show that $p = 2^k + 1$, for some integer $k \ge 0$.
 - c) Find the splitting field and the degree of extension of the splitting field of $f(x) = x^4 + x^2 + 1$ over \mathbb{Q} . (6+4+4)
- 6. a) Prove that characteristic of any finite field is a prime p and it has pⁿ elements, where n is a positive integer.
 - b) Let F be a field of order p^n , where p is prime and n is a positive integer. Prove that F contains a subfield of order p^k if and only if k | n.
 - c) If F is a field of characteristic zero and f(x) is an irreducible polynomial in F[x], then prove that f has no multiple root in any extension of F. (5+5+4)
- 7. a) Define an algebraically closed field. Prove that a field F is algebraically closed if and only if every polynomial in F[x] splits into linear factors in F[x].
 - b) Let F be a field of characteristic zero. Then prove that any finite extension of F is a simple extension.
 - c) Show that $\mathbb{Q}(i, \sqrt[3]{2}) = \mathbb{Q}(i\sqrt[3]{2})$. Find $\mathbb{Q}(i, \sqrt[3]{2}) : \mathbb{Q}$. (3+7+4)
- a) Define the fixed field of group of automorphisms of a field K. If K is a Galois extension of field F, then prove that the fixed field of Galois group G (K/F) is F.
 - b) State and prove the main theorem of Galois theory. (3+11)