Reg. No. \square

II Semester M.Sc. Degree Examination, Sept./Oct. 2022 MATHEMATICS
 Algebra - II
 (CBCS - New Syllabus)

Time: 3 Hours
Max. Marks : 70

Notes: 1) Answer any five full questions.

2) No additional sheets will be provided for answering.
3) Use of scientific calculator is permitted.
1. a) Let D be an integral domain. For $\mathrm{a}, \mathrm{b} \in \mathrm{D}$, prove or disprove that:
i) a divides b in D if and only if $\langle a\rangle \subseteq\langle b\rangle$.
ii) a is irreducible if and only if $\langle a\rangle$ is a maximal ideal in D.
iii) $\langle a\rangle$ and $\langle b\rangle$ are equal if and only if a and b are associates in D.
b) Define a Euclidean domain and a principal ideal domain. Prove that every Euclidean domain is a principal ideal domain.
c) Let a, b be elements of a principal ideal domain R , not both zero. Prove that greatest common divisor of a and b exists in R and it is unique up to associates.
2. a) Let D be an integral domain. Then prove that the factoring into irreducible terminates in D if and only if D does not contain infinite strictly increasing chain $\left\langle\mathrm{a}_{1}\right\rangle \Phi\left\langle\mathrm{a}_{2}\right\rangle \Phi\left\langle\mathrm{a}_{3}\right\rangle \Phi \ldots$ of principal ideals.
b) Prove that, the product of any two primitive polynomials is primitive.
c) Find all irreducible polynomials of degree less than 4 in $\mathbb{Z}_{2}[x]$.
3. a) Let f be an integer polynomial with positive leading coefficient. Then prove that f is irreducible in $\mathbb{Z}[x]$ if and only if it is either a prime integer or a primitive polynomial that is irreducible in $\mathbb{Q}[x]$.
b) Let α be Gauss prime and $\bar{\alpha}$ be its complex conjugate. Then prove that $\alpha \bar{\alpha}$ is either a prime integer or square of a prime integer.
c) Factor $6+9 i$ into primes in $\mathbb{Z}[i]$.
P.T.O.

MTH 452

4. a) Prove or disprove the following :
i) Every finite extension is an algebraic extension.
ii) Every algebraic extension is a finite extension.
b) If L is a finite extension of K and K is a finite extension of F, then prove that L is a finite extension of F.
c) Let $\mathrm{K} \mid \mathrm{F}$ be a field extension and $\alpha \in \mathrm{K}$. Then prove that α is algebraic over F, if and only if $F[\alpha]=F(\alpha)$.
5. a) Show that trisecting an angle is impossible using Ruler and Compass alone.
b) If p is a prime number and a regular p-gon can be constructed by using ruler and compass, then show that $p=2^{k}+1$, for some integer $k \geq 0$.
c) Find the splitting field and the degree of extension of the splitting field of $f(x)=x^{4}+x^{2}+1$ over \mathbb{Q}.
6. a) Prove that characteristic of any finite field is a prime p and it has p^{n} elements, where n is a positive integer.
b) Let F be a field of order p^{n}, where p is prime and n is a positive integer. Prove that F contains a subfield of order p^{k} if and only if $k \mid n$.
c) If F is a field of characteristic zero and $f(x)$ is an irreducible polynomial in $F[x]$, then prove that f has no multiple root in any extension of F.
7. a) Define an algebraically closed field. Prove that a field F is algebraically closed if and only if every polynomial in $\mathrm{F}[\mathrm{x}]$ splits into linear factors in $\mathrm{F}[\mathrm{x}]$.
b) Let F be a field of characteristic zero. Then prove that any finite extension of F is a simple extension.
c) Show that $\mathbb{Q}(i, \sqrt[3]{2})=\mathbb{Q}(i \sqrt[3]{2})$. Find $[\mathbb{Q}(i, \sqrt[3]{2}): \mathbb{Q}]$.
8. a) Define the fixed field of group of automorphisms of a field K. If K is a Galois extension of field F, then prove that the fixed field of Galois group $G(K / F)$ is F.
b) State and prove the main theorem of Galois theory.
