Reg. No.									
----------	--	--	--	--	--	--	--	--	--

MTH 453

Max. Marks: 70

II Semester M.Sc. Degree Examination, September/October 2022 MATHEMATICS Real Analysis – II (CBCS – New Syllabus)

Time : 3 Hours

- Note: 1) Answer any five full questions.
 - 2) No additional sheets will be provided for answering.
 - 3) Use of scientific calculator is permitted.
- a) Let f be a bounded real function on [a, b] and α be a monotonically increasing real function on [a, b]. If f monotonic on [a, b], then prove that f∈ R(α) on [a, b].
 - b) Let f be a bounded real function on [a, b] and α be a monotonically increasing real function on [a, b]. If f has only finitely many discontinuities on [a, b] and α is continuous at every point of discontinuity of f on [a, b], then prove that $f \in \mathcal{R}(\alpha)$ on [a, b]. (5+9)
- 2. a) Suppose $\sum c_n$ converges, where $c_n \ge 0$ for $n \in \mathbb{N}$, $\{s_n\}$ is a sequence of distinct points in (a, b) and $\alpha(x) = \sum c_n I (x s_n)$, where I denotes the unit step function. Let f be continuous on [a, b]. Then prove that $\int_a^b f d\alpha = \sum c_n f(s_n)$.
 - b) If γ' is continuous on [a, b], then show that γ is rectifiable and $A(\gamma) = \int_{a}^{b} |\gamma'(t)| dt$.
 - c) Let f be a bounded real function on [a, b] and suppose $f^2 \in \mathbb{R}$ on [a, b]. Does it follow that $f \in \mathbb{R}$ on [a, b] ? Justify. (6+6+2)
- 3. a) Let f be a bounded real function on [a, b] and α be a monotonically increasing real function on [a, b]. Suppose $\alpha' \in \mathcal{R}$ on [a, b]. Prove that $f \in \mathcal{R}(\alpha)$ on [a, b] if and only if $f\alpha' \in \mathcal{R}$ on [a, b] and in that case show that $\int_a^b f d\alpha = \int_a^b f(x)\alpha'(x)dx$.
 - b) Suppose $f \ge 0$ is a continuous function on [a, b] such that $\int_a^b f(x) dx = 0$. Prove that f = 0 on [a, b]. (9+5)

MTH 453

(8+6)

- 4. a) Suppose $f \ge 0$ and monotonically decreasing on $[1, \infty)$. Then prove that $\int_{1}^{\infty} f dt$ converges if and only if $\sum f(n)$ converges.
 - b) Show that $f(x) = \frac{\sin x}{x}$, $x \in [1, \infty)$ is integrable on $[1, \infty)$, but not absolutely.
- 5. a) Suppose $f_n \rightarrow f$ uniformly on a set E in a metric space. Let x_0 be a limit point of E and suppose that $\lim_{t \rightarrow x_0} f_n(t) = A_n$ for all n. Then prove that $\{A_n\}$ converges and $\lim_{t \rightarrow x_0} f(t) = \lim_{n \rightarrow \infty} A_n$.
 - b) Let α be monotonically increasing on [a, b]. Suppose $f_n \in \mathcal{R}(\alpha)$ on [a, b], for n = 1, 2, 3, ..., and suppose $f_n \to f$ uniformly on [a, b]. Then show that $f \in \mathcal{R}(\alpha)$ on [a, b], and $\int_a^b f d\alpha = \lim_{n \to \infty} \int_a^b f_n d\alpha$. (8+6)
- 6. a) Prove that there exists a real continuous function on the real line which is nowhere differentiable.
 - b) If K is a compact metric space, if $f_n \in C(K)$ for all $n \ge 1$, and if $\{f_n\}$ converges uniformly on K, then show that the family $\tau = \{f_n\}$ is equicontinuous on K. (11+3)
- 7. a) If f is a complex valued continuous function on [a, b], then prove that there exists a sequence $\{P_n\}$ of polynomials with complex coefficients such that $\lim_{n\to\infty} P_n(x) = f(x)$ uniformly on [a, b].
 - b) If f is continuous on [0, 1] and if $\int_0^1 f(x) x^n dx = 0$ for all n = 1, 2, 3, ..., then prove that $f(x) = 0 \forall x \in [0, 1]$. (12+2)
- 8. a) Suppose f maps an open subset $E \subseteq \mathbb{R}^n$ into \mathbb{R}^m . Then $f \in \mathcal{C}'(E)$ if and only if the partial derivatives $D_i f_i$ exist and are continuous on E for $1 \le i \le m, 1 \le j \le n$.
 - b) If X is a complete metric space, and if ϕ is a contraction of X into X, then prove that there exists one and only one $x \in X$ such that $\phi(x) = x$. (10+4)