Reg. No. \square

II Semester M.Sc. Degree Examination, September/October 2022 MATHEMATICS
 Real Analysis - II
 (CBCS - New Syllabus)

Time : 3 Hours
Max. Marks : 70
Note: 1) Answer any five full questions.
2) No additional sheets will be provided for answering.
3) Use of scientific calculator is permitted.

1. a) Let f be a bounded real function on $[a, b]$ and α be a monotonically increasing real function on $[a, b]$. If f monotonic on $[a, b]$, then prove that $f \in \mathcal{R}(\alpha)$ on [a, b].
b) Let f be a bounded real function on [a, b] and α be a monotonically increasing real function on [a, b]. If f has only finitely many discontinuities on $[a, b]$ and α is continuous at every point of discontinuity of f on $[a, b]$, then prove that $f \in \mathcal{R}(\alpha)$ on $[a, b]$.
2. a) Suppose $\sum \mathrm{c}_{\mathrm{n}}$ converges, where $\mathrm{c}_{\mathrm{n}} \geq 0$ for $\mathrm{n} \in \mathbb{N},\left\{\mathrm{s}_{\mathrm{n}}\right\}$ is a sequence of distinct points in (a, b) and $\alpha(\mathrm{x})=\sum \mathrm{c}_{\mathrm{n}} \mathrm{l}\left(\mathrm{x}-\mathrm{s}_{\mathrm{n}}\right)$, where I denotes the unit step function. Let f be continuous on $[a, b]$. Then prove that $\int_{a}^{b} f d \alpha=\sum c_{n} f\left(s_{n}\right)$.
b) If γ^{\prime} is continuous on $[\mathrm{a}, \mathrm{b}]$, then show that γ is rectifiable and $A(\gamma)=\int_{a}^{b}\left|\gamma^{\prime}(t)\right| d t$.
c) Let f be a bounded real function on $[\mathrm{a}, \mathrm{b}]$ and suppose $\mathrm{f}^{2} \in \mathbb{R}$ on $[\mathrm{a}, \mathrm{b}]$.

Does it follow that $f \in \mathcal{R}$ on $[a, b] ?$ Justify.
3. a) Let f be a bounded real function on $[a, b]$ and α be a monotonically increasing real function on $[a, b]$. Suppose $\alpha^{\prime} \in \mathcal{R}$ on $[a, b]$. Prove that $f \in \mathcal{R}(\alpha)$ on $[a, b]$ if and only if $f \alpha^{\prime} \in \mathcal{R}$ on $[a, b]$ and in that case show that $\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x$.
b) Suppose $f \geq 0$ is a continuous function on $[a, b]$ such that $\int_{a}^{b} f(x) d x=0$. Prove that $f=0$ on $[a, b]$.
P.T.O.
4. a) Suppose $f \geq 0$ and monotonically decreasing on $[1, \infty)$. Then prove that $\int_{1}^{\infty} f d t$ converges if and only if $\sum f(n)$ converges.
b) Show that $f(x)=\frac{\sin x}{x}, x \in[1, \infty)$ is integrable on $[1, \infty)$, but not absolutely.
5. a) Suppose $f_{n} \rightarrow f$ uniformly on a set E in a metric space. Let x_{0} be a limit point of E and suppose that $\lim _{t \rightarrow x_{0}} f_{n}(t)=A_{n}$ for all n. Then prove that $\left\{A_{n}\right\}$ converges and $\lim _{t \rightarrow x_{0}} f(t)=\lim _{n \rightarrow \infty} A_{n}$.
b) Let α be monotonically increasing on [a, b]. Suppose $f_{n} \in \mathcal{R}(\alpha)$ on [a, b], for $\mathrm{n}=1,2,3, \ldots$, and suppose $\mathrm{f}_{\mathrm{n}} \rightarrow \mathrm{f}$ uniformly on $[\mathrm{a}, \mathrm{b}]$. Then show that $\mathrm{f} \in \mathbb{R}$ (α) on $[a, b]$, and $\int_{a}^{b} f d \alpha=\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n} d \alpha$.
6. a) Prove that there exists a real continuous function on the real line which is nowhere differentiable.
b) If K is a compact metric space, if $\mathrm{f}_{\mathrm{n}} \in \mathcal{C}(K)$ for all $\mathrm{n} \geq 1$, and if $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ converges uniformly on K, then show that the family $\tau=\left\{{ }_{f}\right\}$ is equicontinuous on $K .(11+3)$
7. a) If f is a complex valued continuous function on $[a, b]$, then prove that there exists a sequence $\left\{P_{n}\right\}$ of polynomials with complex coefficients such that $\lim _{n \rightarrow \infty} P_{n}(x)=f(x)$ uniformly on $[a, b]$.
b) If f is continuous on $[0,1]$ and if $\int_{0}^{1} f(x) x^{n} d x=0$ for all $n=1,2,3, \ldots$, then prove that $f(x)=0 \forall x \in[0,1]$.
8. a) Suppose f maps an open subset $E \subseteq \mathbb{R}^{n}$ into \mathbb{R}^{m}. Then $f \in \mathcal{C}^{\prime}(E)$ if and only if the partial derivatives D_{j} exist and are continuous on E for $1 \leq \mathrm{i} \leq \mathrm{m}, 1 \leq \mathrm{j} \leq \mathrm{n}$.
b) If X is a complete metric space, and if ϕ is a contraction of X into X, then prove that there exists one and only one $\mathrm{x} \in \mathrm{X}$ such that $\phi(\mathrm{x})=\mathrm{x}$.

