Reg. No.									
----------	--	--	--	--	--	--	--	--	--

MTH 454

II Semester M.Sc. Degree Examination, September/October 2022 (CBCS – New Syllabus) MATHEMATICS Topology

Time : 3 Hours

Max. Marks: 70

- Note : 1) Answer any five full questions.
 - 2) No additional sheets will be provided for answering.
 - 3) Use of scientific calculator is permitted.
- 1. a) Show that $\tau=\{\mathbb{R}\}\cup\{G\subseteq\mathbb{R}:0\notin G\}$ is a topology on the set \mathbb{R} of all real numbers.
 - b) If there exists a homeomorphism of a topological space X onto a metric space Y, then show that X is metrizable.
 - c) Define closure A of a set A in a topological space X. Show that A is the smallest closed set containing the set A. If N denotes the set of all positive integers, then find N in the space (ℝ, τ), where τ is given in the problem 1 (a). (3+6+5)
- 2. a) Let A be a subset of a topological space X. Prove that a point $x \in \overline{A}$ if and only if each neighborhood of x intersects A.
 - b) Let $f:X \to Y$ be a mapping of one topological space into another. Show that the following statements are equivalent :
 - i) $f^{-1}(F)$ is closed in X whenever F is closed in Y .
 - ii) $f(\overline{A}) \subseteq \overline{f(A)}$ for every subset A of X.
 - c) Prove or disprove: If X is a non-empty set, Y is a topological space, and $f: X \rightarrow Y$ is any map, then {f⁻¹(V) : V is open in Y} is a topology on X. (5+6+3)
- 3. a) If S is a class of subsets of a non-empty set X, show that S can serve as an open subbase for a topology on X.
 - b) Show that $\overline{X-A} = X Int(A)$ for every subset A of a topological space.
 - c) Prove or disprove : Every second countable space is first countable. (7+4+3)

MTH 454

- 4. a) Define the weak topology generated by a class of functions. Consider a function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} 0 & \text{if } x \leq 1 \\ 2 & \text{if } x > 1 \end{cases} \forall x \in \mathbb{R}$. Give a complete description of the weak topology on \mathbb{R} generated by the function f.
 - b) Let f be a mapping of a topological space X into a product space $\prod_{i \in I} X_i$. Show that f is continuous if and only if $\pi_i \circ f : X \to X_i$ is continuous for each projection π_i .
 - c) Prove that a topological space is compact if and only if every class of closed sets with the finite intersection property has non-empty intersection. (4+5+5)
- 5. a) Show that every closed and bounded interval [a, b], a, b $\in \mathbb{R}$, of the real line \mathbb{R} is compact.
 - b) State and prove Tychonoff's theorem.
 - c) Prove or disprove : Every compact subspace of a topological space is closed. (6+6+2)
- 6. a) Prove that a topological space X is a T₁-space if and only if every finite set is closed in X.
 - b) Let {X_i : i ∈ I} be a non-empty class of topological spaces. Prove that the product space $\prod_{i \in I} X_i$ is Hausdorff if and only if X_i is Hausdorff for each i ∈ I.
 - c) Prove or disprove : A finite T₁-space is discrete. (6+6+2)
- 7. a) Prove that every compact Hausdorff space is normal.
 - b) Let X be a first countable space, Y be a topological space, $f : X \rightarrow Y$ be a map. Prove that the following statements are equivalent :
 - i) $f: X \to Y$ is continuous.
 - ii) For every sequence $x_n \to x$ in X, $f(x_n) \to f(x)$ in Y.
 - c) State Urysohn's Lemma.
- 8. a) Show that a topological space X is disconnected if and only if there exists a continuous mapping of X onto the discrete two-point space {0, 1}.
 - b) Prove that the product of any non-empty class of connected spaces is connected. (5+9)

(6+6+2)