Reg. No.

| -1$)$ |
| :--- | :--- | :--- | :--- |

MTH 552

IV Semester M.Sc. Degree Examination, Sept./Oct. 2022
 (CBCS - New Syllabus)
 MATHEMATICS
 Complex Analysis - II

Time : 3 Hours
Max. Marks : 70

Notes : 1) Answer any five full questions.
2) No additional sheets will be provided for answering.
3) Use of scientific calculator is permitted.
4) All questions carry equal marks.

1. a) If $f(z)$ is meromorphic in Ω with the zeros a_{j} and the poles b_{k}, then show that $\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\sum_{j} n\left(\gamma, a_{j}\right)-\sum_{k} n\left(\gamma, b_{k}\right)$ for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros or poles.
b) How many roots of the equation $z^{4}-6 z+3=0$ have their modulus between 1 and 2 ?
c) Find the poles and residues of the following function
i) $\frac{1}{\sin ^{2} z}$
ii) $\frac{1}{z^{m}\left(1-z^{n}\right)}$
where $m, n \in \mathbb{Z}_{+}$.
2. a) Suppose that $f(z)$ is analytic in the annulus $r_{1}<|z|<r_{2}$ and continuous on the closed annulus. If $M(r)$ denote the maximum of $|f(z)|$ for $|z|=r$, show that $M(r) \leq M\left(r_{1}\right)^{\alpha} M\left(r_{2}\right)^{1-\alpha}$ where $\alpha=\log \left(r_{2} / r\right): \log \left(r_{2} / r_{1}\right)$.
b) Derive Poisson's formula for harmonic function.
3. a) If the function $f_{n}(z)$ are analytic and $\neq 0$ in a region Ω and if $f_{n}(z)$ converges to $f(z)$, uniformly on every compact subset of Ω, then show that $f(z)$ is either identically zero or never equal to zero.
b) Show that the series
$\zeta(z)=\sum_{n=1}^{\infty} n^{-s}$ converges for Rez >1, and represents its derivatives in series
form.
c) What is the co-efficient of z^{7} in the Taylor development of $\tan z$? Also develop $\log (\sin z / z)$ in powers of z upto the term z^{5}.
4. a) Show that $\frac{\pi^{2}}{\sin ^{2} \pi z}=\sum_{n=-\infty}^{+\infty} \frac{1}{(z-n)^{2}}+g(z)$ where $g(z)$ is analytic in the whole complex plane.
b) Prove that

$$
\begin{equation*}
\sin \pi(z+\alpha)=\sin (\pi \alpha) e^{\pi z \cot \pi \alpha} \prod_{-\infty}^{+\infty}\left(1+\frac{z}{n+\alpha}\right) \mathrm{e}^{-z /(n+\alpha)} . \tag{7+7}
\end{equation*}
$$

5. a) Obtain Jensen's formula.
b) Using Poisson's formula derive Poisson-Jensen's formula.
6. a) Show that there exists a basis $\left(w_{1}, w_{2}\right)$ such that the ratio $r=w_{2} / w_{1}$ satisfies the following conditions :
i) $\operatorname{Im} \gamma>0$
ii) $-\frac{1}{2}<\operatorname{Re} \gamma \leq \frac{1}{2}$
iii) $|\gamma| \geq 1$
iv) $\operatorname{Re} \gamma \geq 0$ if $|\gamma|=1$.

Further show that the ratio γ is uniquely determined by these conditions and there is a choice of two, four, or six corresponding bases.
b) Show that an elliptic function without poles is a constant function.
7. a) Prove that $\prod_{n=1}^{\infty}\left(1+\frac{z}{n}\right) e^{-z / n}$ converges absolutely and uniformly on every compact subset of \mathbb{C}.
b) Show that the function $\theta(z)=\prod_{n=1}^{\infty}\left(1+h^{2 n-1} e^{z}\right)\left(1+h^{2 n-1} e^{-z}\right)$ where $|h|<1$ is analytic in the whole plane and satisfies the functional equation $\theta(z+z \operatorname{logh})=h^{-1} e^{-z} \theta(z)$.
8. a) Show that any even elliptic function for which ' 0 ' is neither a zero nor a pole can be written as :
$C \prod_{n=1}^{n} \frac{P(z)-P\left(a_{k}\right)}{P(z)-P\left(b_{k}\right)}$.
b) Show that $\mathrm{P}(\mathrm{z})-\mathrm{P}(\mathrm{u})=\frac{-\sigma(\mathrm{z}-\mathrm{u}) \sigma(\mathrm{z}+\mathrm{u})}{(\sigma+\mathrm{z})^{2}(\sigma(\mathrm{u}))^{2}}$.

