Reg. No. \square
\square MTH 553

IV Semester M.Sc. Degree Examination, September/October 2022 (CBCS - New Syllabus) MATHEMATICS
 Functional Analysis

Time : 3 Hours
Max. Marks : 70
Note : 1) Answer any five full questions.
2) Answer to each full question shall not exceed eight pages of the answer book. No additional sheets will be provided for answering.
3) Use of scientific calculator is permitted.

1. a) Let N be a normed linear space and let M be a closed linear subspace of N. For $x+M \in N / M$, define $\|x+M\|=\inf \{\|x+m\|: m \in M\}$. Show that N / M is a normed linear space. Further show that if N is a Banach space, then so is N / M.
b) Prove that the interior of a proper linear subspace of a normed linear space is empty.
2. a) Let $\mathrm{T}: \mathrm{N} \rightarrow \mathrm{N}^{\prime}$ be a linear transformation of normed linear spaces. Show that the following are equivalent :
i) T is continuous
ii) T is continuous at the origin
iii) there exists a $K \geq 0$ such that $\|T(x)\| \leq K\|x\|$ for all $x \in N$.
iv) if $S=\{x \in N:\|x\| \leq 1\}$, then $T(S)$ is a bounded subset of N^{\prime}.
b) Give an example of a linear transformation of normed linear spaces which is not continuous.
c) Let M be a closed linear subspace of a normed linear space N and let $x_{0} \in N-M$. Prove that there exists a functional $f_{0} \in N^{*}$ such that $f_{0}(M)=0$ and $\mathrm{f}_{0}\left(\mathrm{x}_{0}\right) \neq 0$.
3. a) Let M be a linear subspace of a normed linear space N and let f be a functional defined on M. If x_{0} is a vector not in M and if $M_{0}=M+\left[x_{0}\right]$ is the linear subspace spanned by M and x_{0}, then show that f can be extended to a functional f_{0} on M_{0} such that $\left\|f_{0}\right\|=\|f\|$.
b) Let a Banach space B be made into a Banach space B^{\prime} by means of a new norm. Show that the topologies generated by these norms are same if either is stronger than the other.
4. a) Let B and B^{\prime} be Banach spaces and let $T: B \rightarrow B^{\prime}$ be a linear transformation. Then show that T is continuous if its graph is a closed set in $B \times \mathrm{B}^{\prime}$.
b) State and prove the Uniform Boundedness theorem. Hence prove that, a non-empty subset X of a normed linear space N is bounded if and only if $f(X)$ is a bounded set of scalars for every $f \in N^{*}$.
5. a) State and prove the Schwarz inequality for a Hilbert space H and hence derive that the inner product on H is jointly continuous.
b) Is the Banach space $C([0,1], \mathbb{R})$ of all continuous real functions on $[0,1]$ with sup norm, a Hilbert space ? Justify.
c) If M and N are closed linear subspaces of a Hilbert space H such that $\mathrm{M} \perp \mathrm{N}$, then prove that the linear subspace $\mathrm{M}+\mathrm{N}$ is also closed.
d) If S is a non-empty subset of a Hilbert space H, then show that $S^{\perp}=S^{\perp \perp \perp}$. (5+3+4+2)
6. a) If $\left\{e_{i}\right\}$ is an orthonormal set in a Hilbert space H and if $x \in H$, then prove that $x-\sum\left\langle x, e_{i}\right\rangle e_{i}$ is orthogonal to e_{j} for all j.
b) Show that every orthonormal set in a Hilbert space H is contained in some complete orthonormal set. Use it to prove the following :
If M is a proper closed linear subspace of H , then there exists a non-zero vector z_{0} in H such that $z_{0} \perp M$.
7. a) Prove that the following statements are equivalent for an orthonormal set $\left\{\mathrm{e}_{\mathrm{i}}\right\}$ of a Hilbert space H :
i) $\left\{e_{i}\right\}$ is complete.
ii) $x \perp e_{i}$ for all implies $x=0$.
iii) If x is an arbitrary vector in H, then $x=\sum\left\langle x, e_{i}\right\rangle e_{i}$.
iv) If x is an arbitrary vector in H, then $\|x\|^{2}=\sum\left|\left\langle x, e_{i}\right\rangle\right|^{2}$.
b) Prove that every Hilbert space is reflexive.
c) Show that an operator T on a Hilbert space H is normal if and only if $\left\|T^{*} x\right\|=\|T x\|$ for all $x \in H$. Hence prove that if N is a normal operator on H , then $\left\|\mathrm{N}^{2}\right\|=\|\mathrm{N}\|^{2}$.
8. a) Let M be a closed linear subspace of a Hilbert space H, P be a projection on M and T be an operator on H . Then prove the following :
i) M is invariant under T if and only if TP = PTP.
ii) M reduces T if and only if $\mathrm{TP}=\mathrm{PT}$.
b) If P and Q are projections on closed linear subspaces M and N of a Hilbert space H , then prove that the following statements are equivalent :
i) $P \leq Q$
ii) $\|P x\| \leq\|Q x\|$ for every $x \in H$
iii) $M \subseteq N$
iv) $P Q=P$
v) $Q P=P$.
c) Let P_{1}, \ldots, P_{n} be projections on the closed linear subspaces M_{1}, \ldots, M_{n} of a Hilbert space H and $M=M_{1}+\ldots+M_{n}$. Then show that $P=P_{1}+\ldots+P_{n}$ is a projection if and only if P_{i} 's are pairwise orthogonal and in this case P is the projection on M .
$(4+4+6)$
