Reg. No.					

MTH 553

Max. Marks: 70

IV Semester M.Sc. Degree Examination, September/October 2022 (CBCS – New Syllabus) MATHEMATICS Functional Analysis

Time : 3 Hours

- Note : 1) Answer any five full questions.
 - 2) Answer to **each full** question shall **not** exceed **eight** pages of the answer book. **No** additional sheets will be provided for answering.
 - *3)* Use of scientific calculator is **permitted**.
- a) Let N be a normed linear space and let M be a closed linear subspace of N. For x + M ∈ N/M, define ||x + M|| = inf {||x + m|| : m ∈ M}. Show that N/M is a normed linear space. Further show that if N is a Banach space, then so is N/M.
 - b) Prove that the interior of a proper linear subspace of a normed linear space is empty. (10+4)
- 2. a) Let $T:N\to N'$ be a linear transformation of normed linear spaces. Show that the following are equivalent :
 - i) T is continuous
 - ii) T is continuous at the origin
 - iii) there exists a $K \ge 0$ such that $||T(x)|| \le K ||x||$ for all $x \in N$.
 - iv) if $S = \{x \in N : ||x|| \le 1\}$, then T(S) is a bounded subset of N'.
 - b) Give an example of a linear transformation of normed linear spaces which is not continuous.
 - c) Let M be a closed linear subspace of a normed linear space N and let $x_0 \in N M$. Prove that there exists a functional $f_0 \in N^*$ such that $f_0 (M) = 0$ and $f_0(x_0) \neq 0$. (6+4+4)

MTH 553

- 3. a) Let M be a linear subspace of a normed linear space N and let f be a functional defined on M. If x_0 is a vector not in M and if $M_0 = M + [x_0]$ is the linear subspace spanned by M and x_0 , then show that f can be extended to a functional f_0 on M_0 such that $||f_0|| = ||f||$.
 - b) Let a Banach space B be made into a Banach space B' by means of a new norm. Show that the topologies generated by these norms are same if either is stronger than the other. (12+2)
- 4. a) Let B and B' be Banach spaces and let T : $B \rightarrow B'$ be a linear transformation. Then show that T is continuous if its graph is a closed set in $B \times B'$.
 - b) State and prove the Uniform Boundedness theorem. Hence prove that, a non-empty subset X of a normed linear space N is bounded if and only if f(X) is a bounded set of scalars for every f ∈ N*. (5+9)
- 5. a) State and prove the Schwarz inequality for a Hilbert space H and hence derive that the inner product on H is jointly continuous.
 - b) Is the Banach space $C([0, 1], \mathbb{R})$ of all continuous real functions on [0, 1] with sup norm, a Hilbert space ? Justify.
 - c) If M and N are closed linear subspaces of a Hilbert space H such that $M \perp N$, then prove that the linear subspace M + N is also closed.
 - d) If S is a non-empty subset of a Hilbert space H, then show that $S^{\perp} = S^{\perp \perp \perp}$. (5+3+4+2)
- 6. a) If $\{e_i\}$ is an orthonormal set in a Hilbert space H and if $x \in H$, then prove that $x \sum \langle x, e_i \rangle e_i$ is orthogonal to e_i for all j.
 - b) Show that every orthonormal set in a Hilbert space H is contained in some complete orthonormal set. Use it to prove the following : If M is a proper closed linear subspace of H, then there exists a non-zero vector z_0 in H such that $z_0 \perp M$. (10+4)
- 7. a) Prove that the following statements are equivalent for an orthonormal set $\{e_i\}$ of a Hilbert space H :
 - i) {e_i} is complete.
 - ii) $x \perp e_i$ for all i implies x = 0.
 - iii) If x is an arbitrary vector in H, then $\mathbf{x} = \sum \langle \mathbf{x}, \mathbf{e}_i \rangle \mathbf{e}_i$.
 - iv) If x is an arbitrary vector in H, then $||x||^2 = \sum |\langle x, e_i \rangle|^2$.
 - b) Prove that every Hilbert space is reflexive.
 - c) Show that an operator T on a Hilbert space H is normal if and only if ||T*x|| = ||Tx|| for all x ∈ H. Hence prove that if N is a normal operator on H, then ||N²|| = ||N||². (6+4+4)

MTH 553

- 8. a) Let M be a closed linear subspace of a Hilbert space H, P be a projection on M and T be an operator on H. Then prove the following :
 - i) M is invariant under T if and only if TP = PTP.
 - ii) M reduces T if and only if TP = PT.
 - b) If P and Q are projections on closed linear subspaces M and N of a Hilbert space H, then prove that the following statements are equivalent :
 - i) $P \leq Q$
 - ii) $||Px|| \le ||Qx||$ for every $x \in H$
 - iii) M ⊆ N
 - iv) PQ = P
 - v) QP = P.
 - c) Let P_1, \ldots, P_n be projections on the closed linear subspaces M_1, \ldots, M_n of a Hilbert space H and M = $M_1 + \ldots + M_n$. Then show that P = $P_1 + \ldots + P_n$ is a projection if and only if P_i 's are pairwise orthogonal and in this case P is the projection on M. (4+4+6)